
Anti-Deprecation:
Towards Complete Static Checking for

API Evolution

S. Alexander Spoon
LAMP, Station 14

Swiss Federal Institute of Technology in Lausanne (EPFL)
CH-1015 Lausanne

lex@lexspoon.org

ABSTRACT
API evolution is the process of migrating an inter-library
interface from one version to another. Such a migration re-
quires checking that all libraries which interact through the
interface be updated. Libraries can be updated one by one if
there is a transition period during which both updated and
non-updated libraries can communicate through some tran-
sitional version of the interface. Static type checking can
verify that all libraries have been updated, and thus that
a transition period may end and the interface be moved
forward safely. Anti-deprecation is a novel type-checking
feature that allows static checking for more interface evo-
lutions periods. Anti-deprecation, along with the more fa-
miliar deprecation, is formally studied as an extension to
Featherweight Java. This formal study unearths weaknesses
in two widely used deprecation checkers.

“In Java when you add a new method to an interface, you
break all your clients.... Since changing interfaces breaks
clients you should consider them as immutable once you’ve
published them.” –Erich Gamma [21]

“NoSuchMethodError” –Java VM, all too frequently

1. OVERVIEW
Libraries communicate with each other via application pro-
gramming interfaces (API’s), or interfaces for short. The
key idea with interfaces is that so long as a set of libraries
conform to their interfaces, those libraries will tend to func-
tion together when they are combined. This approach is a
key part of standard discussions of software modularity [2].

This interfaces idea supports independent evolution of li-
braries, in that libraries can be updated so long as they
continue to conform to their interfaces. However, this strat-

LCSD 2006 Portland, Oregon, USA

egy does not address evolution of the interfaces themselves.
Since in practice the first definition of an interface is often
insufficient, practitioners need some approach for improving
interfaces. This is the problem of interface evolution.

Interface evolution arises in practice for large-scale projects
with multiple independent development groups. The Eclipse
project, for example, includes plugin code written by devel-
opment groups all over the world. For such projects, sub-
stantial attention is put onto the problem of safely upgrading
interfaces [5].

Transition periods provide a general mechanism for evolving
the interfaces between independently maintained libraries.
A transition period is a period of time during which both
updated and non-updated libraries can successfully commu-
nicate through an evolving interface.

During a transition period, all libraries that conform to the
original version of an interface must be allowed to continue
to function. As the transition period progresses, more and
more libraries should be updated for the forthcoming ver-
sion of the interface, while continuing to work with the
transitional version of the interface. A transition period
can successfully terminate when all libraries communicating
through the interface have been either updated or aban-
doned. At that time, the interface itself can be upgraded.

Static type checking can be used to verify that a transition
period may be safely entered or left. At the beginning of
a transition period, static checking can ensure that all li-
braries conforming to the current interface will continue to
conform to the new, transitional interface. At the end of a
transition period, static checking can ensure that all checked
libraries are ready to progress to the next version of the in-
terface. The same checker can be used for both purposes
if the checker has two strictness levels. The strict level is
used to check the exit from transition periods, while the
looser transitional level is used for all other type-checking
purposes.

This article studies static type checking for deprecation and
anti-deprecation of methods. Deprecation is widely used,
while anti-deprecation appears to be novel for programming
languages. After describing the features in general, the arti-
cle defines them formally as an extension to Featherweight

public interface ConnectionListener {

public void connectionClosed();

public void connectionClosedOnError(Exception e);

}

public interface ConnectionListener2

extends ConnectionListener {

public void connectionAuthenticated();

}

Figure 1: Two interfaces from Eclipse. The second
interface is the same as the first except that it re-
quires one new method.

public interface ConnectionListener {

public void connectionClosed();

public void connectionClosedOnError(Exception e);

encouraged public void connectionAuthenticated();

}

Figure 2: With encouraged methods, the new
method could have been gradually phased into the
original interface.

Java [11], and proves several core properties about the for-
malism. This systematic study not only defines the new
feature, but unearths two places where current deprecation
checkers could be improved.

2. STATIC TRANSITION CHECKING
Static checking can help both entering and leaving transition
periods. When entering a transition period, the checker can
verify that clients will continue to compile and run, even
if not all libraries using the interface are available. As the
transition period moves forward, each library’s developers
can use the checker as they update their library to verify
that their updates are sufficient for the next version of the
interface. Once all libraries have been updated and checked,
it is safe to move the interface forward.

Put another way, the entries and exits of transition periods
are refactorings [14]. If the static checker is satisfied, then
crossing these end points causes a change in program syntax
but not in program behavior.

Not all libraries need to be available to those maintaining
the interface. The conditions for entering a transition period
are typically weak, thus giving interface maintainers broad
liberty to start an interface transition. Leaving the tran-
sition period requires more work, but it does not need to
be finished immediately. Every library whose components
use the interface must be checked with the strict checker,
but those checks can occur throughout the transition pe-
riod. Once the (loose) organization of library maintainers
have decided that sufficient checking has occurred, and if no
errors are known to be present, the transition period can be
left.

Organization processes for deciding that enough library as-
semblies have been checked that a transition period may

be left are beyond the scope of this article. Presumably,
however, some such agreement has been reached among the
library developers. As one example arrangement, the main-
tainers of the interface might commit to a minimum length
of evolution period. That length might be e.g. six months, a
year, or five years. Anyone building assemblies that use that
interface must periodically check their library, with a period
no longer than the agreed length of evolution periods.

A static transition checker can be described as having two
modes: transitional and strict. If a library passes the transi-
tional checker, then the library can communicate with other
libraries through the interface. If a library additionally
passes the strict checker, then the library will also continue
to work if the interface is updated. The strict checker takes
into consideration extra annotations describing the desired
interface changes, while the transitional checker mostly ig-
nores such annotations.

Implementations can combine the two checking modes. All
code must pass the transitional checker, while failure to ad-
ditionally pass the strict checker causes interface-evolution
warnings.

3. ANTI-DEPRECATION
Deprecation allows a static checker to emit warnings when-
ever a caller tries to use a method that is expected to dis-
appear in a future version of an interface. A complemen-
tary scenario is also important: sometimes a future version
of an interface will require an additional method. An an-
notation for such future required methods could be called
anti-deprecation.

The typical usage for anti-deprecation is shown in Figures 1
and 2. Figure 1 shows one of Eclipse’s “I*2” interfaces, an
interface that is an extension of an earlier interface. Expe-
rience with the framework showed that the earlier interface
was too thin, but given the nature of Java interfaces, new
methods could not be added to the existing, published inter-
face. Thus, the Eclipse developers added a second interface
which merely extends the first interface and adds one new
method. With encouraged methods, the designers would
have had the option to phase in the method to the existing
interface, as shown in Figure 2.

A simple way to annotate anti-deprecation is to add an
encouraged keyword to the language. Unlike other meth-
ods, a method marked as encouraged cannot be called. Its
presence only serves to mark that a future version of the
interface will include that same method as abstract.

During transitional checking, encouraged methods are, for
the most part, treated as if they were not present at all. The
only restriction is that encouraged methods cannot over-
ride other non-encouraged methods. Allowing such would
be complicated and unhelpful—after all, if a method is al-
ready present due to inheritance, what use is it to encourage
it further? The one exception, that encouraged methods can
nonetheless override other encouraged methods, is necessary
so that encouraged methods can be added over other en-
couraged methods. In strict checking, even this case is not
allowed, and the encouraged method deeper in the hierarchy
needs to be removed.

L ::= class C extends C { C̄ f̄ ; K X̄ M̄ }
X ::= deprecated m;

K ::= C(C̄ f̄) { super(f̄); this.f̄ = f̄ ; }
M ::= C m(C̄ f̄) MB

MB ::= { return e ; } | abstract | encouraged
e ::= x | e.f | e.m(ē) | new C(ē) | (C)e

Figure 3: Syntax of FJ-ADE

During strict checking, encouraged methods add several re-
quirements for programs to pass the checker. First, any
method that overrides an encouraged method must have
the required parameter types and return type. This re-
quirement is present so that when an encouraged method
is later promoted to a required method, all methods over-
riding it will have conforming types. Second, every subclass
of a class with an encouraged method must either implement
the method or be considered abstract and uninstantiable.

The combination of deprecation and anti-deprecation allows
for an additional class of changes that neither mechanism
supports alone: arbitrary changes to a method’s signature.
For example, one might wish to change the set of exceptions
thrown by a method, or change a method’s return type, or
change its public or private visibility.

Such changes can always be accomplished using four tran-
sition periods. The first period introduces a new version of
the method with a different name than the original method.
Since the method is new, it can be given any type signature
at all. The second period deprecates the original method,
thus inducing callers to use the new version of the method.
The third period replaces the deprecated original method
with an encouraged method of the desired signature. The
fourth period deprecates the temporary method name, thus
inducing clients to change back to using the original method.

Alternatively, developers can choose a shorter two-phase se-
quence if they are content for the new method to have a
different name from the original. They can simply stop af-
ter the first two transition phases.

These rules for encouraged and deprecated might seem pes-
simistic. These rules are formed under the assumption that
developers in other groups might both implement any inter-
face and invoke the methods it advertises. If this assumption
were changed to restrict what other developers can do, then
some interface changes could be safely performed with fewer
or even no transition periods.

For example, suppose that one party controls an interface
along with all of its implementors. In that case, that party
can add methods to the interface without needing a transi-
tion period. They can simply make a simultaneous release
of the updated interface and the updated implementors of
that interface. Likewise, if one party controls all callers to
an interface, e.g. as with call backs, that party can remove
methods from the interface without needing a transition pe-
riod.

The present work addresses the less constrained scenario
where outside developers can both implement an interface
and call through it. The main reason for this choice is that
it is the more general and difficult case. However, notice
that even when outside developers are expected to be more
constrained in their work, it is desirable to allow them the
greater flexibility. At the least, it is useful for testing if pro-
grammers can implement their own mock objects to stand
in place of the usual ones [12, 9].

4. EXTENDING FEATHERWEIGHT JAVA
While deprecated and encouraged are simple to describe, it
proves tricky to develop the precise rules for checking them
so that transition periods can be safely entered and left. In
order to determine the precise checking rules, the bulk of
this article focuses on a formal study of a small language
including these keywords.

The keywords are added to Featherweight Java (FJ) [11],
a language that has several appealing characteristics: it is
tiny, making it amenable to formal study; it uses familiar
syntax, so that the work is more approachable; and it cap-
tures two features at the heart of object-oriented languages,
message sending and inheritance.

In one way, though, the FJ language is a little too small for
the present purpose: it does not include a notion of inter-
faces. Instead of adding a full interface concept, it suffices
to add abstract methods. Abstract methods allow abstract
classes, which for the present purpose serve as perfectly fine
interfaces. The full extended language is called FJ-ADE
because it is Featherweight Java with three new keywords:
abstract, deprecated, and encouraged.

The notation is generally that of FJ. When a line of code
is written down by itself as an assumption, the meaning is
that that line of code appears somewhere in the program.
A sequence is written x̄, denoting the sequence x1, . . . , xn,
where #(x̄) = n. The empty sequence is • by itself, while a
comma between two sequences denotes concatenation. Pairs
of sequences are a shorthand for a sequence of pairs; for
example, C̄ x̄ means C1 x1 . . . Cn xn. The notation x ∈ ȳ
means that x = yi for some i. Negation, written ¬P , is
not boolean negation, but instead means that P cannot be
proven with the available inference rules.

The syntax of FJ-ADE is given in Figure 3. There are a few
differences from FJ:

• Methods can be abstract. Any class that defines or
inherits an abstract method is considered abstract and
cannot be instantiated with new.

• Methods can be encouraged. An encouraged method
will be added to a future version of the class with the
specified type signature.

• Each class has a list of deprecated methods. Depre-
cated methods are going to be removed in a future
version of the class.

Subtyping for FJ-ADE is shown in Figure 7. As in FJ, it
exactly follows the class hierarchy.

T-Var
x : C ∈ Γ
Γ ` x : C

T-Field
Γ ` e0 : C0 fields(C0) = C̄ f̄

Γ ` e0.fi : Ci

T-New

fields(C) = D̄ f̄ str ; Γ ` ē : C̄ C̄ <: D̄
¬abstract(C) (str = trans) ∨ (¬postabs(C))

str ; Γ ` new C(ē) : C

T-Invk

str ; Γ ` e0 : C0

mtype(m, C0, false, str = trans) = D̄ → C
str ; Γ ` ē : C̄ C̄ <: D̄

str ; Γ ` e0.m(ē) : C

T-UCast
Γ ` e0 : D D <: C

Γ ` (C)e0 : C

T-DCast
Γ ` e0 : D C <: D C 6= D

Γ ` (C)e0 : C

T-SCast
Γ ` e0 : D D 6<: C D 6<: C stupid warning

Γ ` (C)e0 : C

Figure 4: Typing of expressions

T-Method-Fresh

str ; x̄ : C̄, this : C ` e0 : E0 E0 <: C0

class C extends D {. . . }
¬mavail(m, D, (str = strict), true)

C0 m(C̄ x̄) { return e0; } str−OK IN C

T-Method-Over

str ; x̄ : C̄, this : C ` e0 : E0 E0 <: C0

class C extends D {. . . }
mtype(m, D, (str = strict), true) = D̄ → D0

C̄ = D̄ C0 = D0

C0 m(C̄ x̄) { return e0; } str−OK IN C

T-Method-Abs

class C extends D {. . . }
¬mavail(m, D, (str = strict), true)

C0 m(C̄ x̄) abstract str−OK IN C

T-Method-Enc

class C extends D {. . . }
¬mavail(m, D, (str = strict), true)

C0 m(C̄ x̄) encouraged str−OK IN C

Figure 5: Typing of methods

T-Class

K = C(D̄ ḡ, C̄ f̄) { super(ḡ); this.f̄ = f̄ ; }
fields(D) = D̄ ḡ M̄ str−OK IN C

∀m ∈ X̄ : candep(C, m)

class C extends D { C̄ f̄ ; K X̄ M̄ } str−OK

Figure 6: Typing of classes

C <: C

class C extends E {. . . } E <: D

C <: D

Figure 7: Subtyping

fields(Object) = •

class C extends D {C̄ f̄ ; K X̄ M̄}
fields(D) = D̄ ḡ

fields(C) = D̄ ḡ, C̄ f̄

Figure 8: Field lookup

An entire program is denoted CT or CT ′. Notationally,
CT is a table, and CT (C) is the class named C in program
CT . Valid programs have several syntactic restrictions: the
inheritance hierarchy is non-cyclical, all field names and pa-
rameter names are distinct, Object 6∈ dom(CT), and every
class name appearing in the program is in the domain of
CT .

The fields function, defined in Figure 8, computes the com-
plete list of fields in a class.

The mtype function, defined in Figure 9, looks up the type
of a method assuming it is invoked on a particular class. As
compared to FJ, FJ-ADE’s mtype function has two new flag
parameters: one determining whether to include methods
that are merely encouraged, and one determining whether
to include methods that have been deprecated. While FJ’s
mtype considers all methods equally, FJ-ADE’s mtype op-
tionally declines to consider deprecated or encouraged meth-
ods or both, according to the two flags. Such methods are
significant or not in different contexts in the type checker,
and thus mtype must have extra parameters.

One particular complication is the treatment of deprecated
methods when the fourth flag is false. In that case, mtype is
still defined for that method if the chain of methods it over-
rides includes a non-deprecated method, and if all methods
in that chain up to the non-deprecated method have the
same type signature. The addition of this case means that
core properties about mtype remain simple. See Lemma 1
and Lemma 2.

The mavail relation, also shown in Figure 9, claims that a
method is available in a class without being specific about
the method’s type. Its arguments are the same as for mtype.

The mbody function, defined in Figure 10, is used during
evaluation to find the method responding to a message-send
expression. It is the same as in FJ except that there are two
new clauses to support abstract and encouraged methods.

The abstract function, also defined in Figure 10, checks
whether a class defines or inherits an abstract method. Note
that this definition ignores encouraged methods, because

MT-Here

class C extends D {C̄ f̄ ; K X̄ M̄}
B m(B̄ x̄) MB ∈ M̄

enc ∨ (MB 6= encouraged)
dep ∨ (m 6∈ X̄)

mtype(m, C, enc, dep) = B̄ → B

MT-Inher

class C extends D {C̄ f̄ ; K X̄ M̄}
m /∈ M̄

mtype(m, D, enc, dep) = B̄ → B

mtype(m, C, enc, dep) = B̄ → B

MT-Depover

class C extends D {C̄ f̄ ; K X̄ M̄}
B m(B̄ x̄) MB ∈ M̄ m ∈ X̄
mtype(m, D, enc, false) = B̄ → B

mtype(m, C, enc, false) = B̄ → B

mtype(m, C, enc, dep) = D̄ → D

mavail(m, C, enc, dep)

Figure 9: Method type lookup

those methods are not yet available.

Post-abstract classes are those that might become abstract
after the program evolves forward. The postabs function,
defined in Figure 11, gives a conservative notion of post-
abstract classes. It is defined in terms of a postneeds func-
tion which claims, more specifically, that the class might
lack a particular method following either the removal of
deprecated methods or the upgrading of encouraged meth-
ods to abstract or both. A class that postneeds any method
at all is considered post-abstract.

The type checker of FJ needs to be updated in two ways for
FJ-ADE. First, it needs to address the three new keywords.
Second, it needs to have both a strict and transitional mode.
An FJ-ADE typing judgement is written str ; Γ ` e : C. As
usual, Γ is a static typing environment, e is an expression,
and C is a type (i.e., a class). The str flag specifies whether
to use strict type checking (str = strict) or transitional
type checking (str = trans).

The typing rules for expressions are shown in Figure 4. Only
two rules differ from FJ. First, the T-Invk judgement must
specify the two extra parameters of mtype. The first ar-
gument is always false, because methods that are present
merely for encouragement are not allowed to be invoked, not
even in transitional mode. In transitional mode, encouraged
methods might not be implemented yet. In strict mode they
must be available, but they are left unavailable so that the
strict checker does not admit any programs the transitional
checker rejects. The second argument is true in transitional
mode and false otherwise, because deprecated methods can
be used only during transitional checking.

The other changed rule is T-New, which now disallows in-
stantiating abstract classes. This rule means that an in-
variant during evaluation is that all instantiated objects are
concrete, thus making it safe for T-Invk to consider abstract

MB-Conc

class C extends D {K X̄ M̄}
B m(B̄ x̄) { return e } ∈ M̄

mbody(m, C) = x̄.e

MB-Abs

class C extends D {K X̄ M̄}
B m(B̄ x̄) abstract ∈ M̄

mbody(m, C) = abstract

MB-Enc

class C extends D {K X̄ M̄}
B m(B̄ x̄) encouraged ∈ M̄

mbody(m, C) = encouraged

MB-Inher

class C extends D {K X̄ M̄}
m 6∈ M̄ mbody(m, D) = MB

mbody(m, C) = MB

mbody(m, C) = abstract

abstract(C)

Figure 10: Method lookup

methods as potential callees. In strict mode, T-New also
disallows instantiating post-abstract classes. Post-abstract
classes are not abstract now, but might become so after
forthcoming interface changes.

The rules for typing methods are given in Figure 5. The
main change from FJ is that, under strict typing, any method
overriding an encouraged method must have the same signa-
ture that was encouraged. An additional change is that ab-
stract methods and encouraged methods may only override
encouraged methods. In principle abstract methods could
be allowed in more places, but the complication provides no
insight for the present purposes.

Finally, the rule for typing a class is given in Figure 6. The
only difference from FJ is that the list of deprecated meth-
ods must be checked. The precise rule is given by the candep
relation shown in Figure 12. Deprecated methods may not
override concrete methods; they may only override depre-
cated, abstract, and encouraged methods.

It is not useful to have a deprecated method to override
a concrete, non-deprecated method. Code can type check
against the superclass with no deprecation warning, because
the superclass’s implementation is not deprecated. At run
time, such code might actually invoke the deprecated method.
In such a case, removing the deprecated method will mean
the program’s behavior changes.

If this behavior change is acceptable, and the overriding
method does not need to be called, then that method should
simply be removed outright. If the change is not acceptable,
then either the method should be kept indefinitely, or the
superclass’s method should be deprecated so that no clients
can call it.

That concludes the typing rules. The semantics of FJ-ADE,
which are exactly the same as those of FJ, are shown in

postneeds(m, C)

postabs(C)

PN-Abs

class C extends D {K X̄ M̄}
B m(B̄ x̄) abstract ∈ M̄

postneeds(m, C)

PN-Enc

class C extends D {K X̄ M̄}
B m(B̄ x̄) encouraged ∈ M̄

postneeds(m, C)

PN-Deprec

class C extends D {K X̄ M̄}
postneeds(m, D) m ∈ X

postneeds(m, C)

PN-Inher

class C extends D {K X̄ M̄}
postneeds(m, D) m 6∈ M

postneeds(m, C)

Figure 11: Post-abstract classes

class C extends D {. . . }
¬mavail(m, D, false, false)

candep(m, C)

postneeds(m, C)

candep(m, C)

Figure 12: Deprecated methods can only override
other deprecated methods and potentially abstract
methods.

Figure 13.

5. PROPERTIES
Given the careful definition of FJ-ADE, we can now study
some properties that it enjoys. The properties are divided
into two parts: typical type-soundness properties, and prop-
erties to support statically checked interface evolution.

The proofs contain no surprises, so they and some lemmas
are omitted. The full proofs appear in an extended technical
report [18].

5.1 Type soundness
There are three type-soundness properties worth dwelling
on. The first two show that FJ-ADE is type sound in the
usual sense: it enjoys both subject reduction and progress
theorems. The last property is that strict checking implies
transitional checking.

Theorem 1. (Subject Reduction). Suppose CT is str-
OK. If str ; Γ ` e : C and e −→ e′, then str ; Γ ` e′ : C′

for some C′ <: C.

The proof structure is very close to that for subject reduc-
tion for FJ. The main differences are in the supporting lem-

R-Field
fields(C) = C̄ f̄

(new C(ē)).fi −→ ei

R-Invk
mbody(m, C) = x̄.e0

(new C(ē)).m(d̄) −→ [d̄/x̄, new C(ē)/this]e0

R-Cast
C <: D

(D)(new C(ē)) −→ new C(ē)

RC-Field e −→ e′

e.f −→ e′.f

RC-Invk-Recv e −→ e′

e.m(ē) −→ e′.m(ē)

RC-Invk-Arg e −→ e′

e0.m(d̄, e, f̄) −→ e0.m(d̄, e′, f̄)

RC-New-Arg e −→ e′

new C(d̄, e, f̄) −→ new C(d̄, e′, f̄)

RC-Cast e −→ e′

(C)e −→ (C)e′

Figure 13: Evaluation

mas.

The first lemma is that mtype’s last two arguments do not
affect the type the function calculates, but only whether the
function is defined or not. Further, changing one argument
or both from false to true can only cause the function to
change from undefined to defined, never from defined to un-
defined. That is, the truer the third and fourth arguments,
the more often mtype is defined.

Lemma 1. (Internal Consistency of mtype). Suppose dep,
dep′, enc, and enc′ are four booleans such that enc ⇒ enc′

and dep ⇒ dep′. If mtype(C, m, enc, dep) = C̄ → C0, then
mtype(C, m, enc′, dep′) = C̄ → C0.

The following lemma shows that, roughly, once mtype re-
turns a result at one point in the class hierarchy, it returns
the same result deeper in the hierarchy under that point.
Note, though, that this is only true so long as encouraged

methods are ignored; during transitional checking, methods
are allowed to change the type signature when they override
a method that is merely encouraged.

Lemma 2. (Subclasses and mtype). Suppose CT is str-
OK and that mtype(m, D, false, dep) = C̄ → C0. For all
C <: D, also mtype(m, C, false, dep) = C̄ → C0.

Lemma 3. (Term Substitution Preserves Typing). Sup-
pose CT is str-OK. If str ; Γ, x̄ : B̄ ` e : D, and str ; Γ ` d̄ : Ā
where Ā <: B̄, then str ; Γ ` [d̄/x̄]e : C, for some C <: D.

Lemma 4. (Weakening). If str ; Γ ` e : C, then str ; Γ, x :
B ` e : C.

The next lemma is modified from that for FJ by adding two
arguments to the use of mtype. The choice of parameters—
false and (str = trans)—are those used by T-Invk.

Lemma 5. Suppose that CT is str-OK, mbody(m, C0) =
x̄.e, and mtype(m, C0, false, (str = trans)) = D̄ → D.
Then, there is a D0 with C0 <: D0, and a C with C <: D,
such that str ; x̄ : D̄, this : D0 ` e : C.

Theorem 2. (Progress). Suppose CT is trans-OK, and
e is any well-typed expression.

1. If e includes (new C0(ē)).f as a subexpression, then
fields(C0) = C̄ f̄ and f ∈ f̄ for some C̄ and f̄ .

2. If e includes (new C0(ē)).m(d̄) as a subexpression, then
mbody(m, C0) = x̄.e0 and #(x̄) = #(d̄) for some x̄ and
e0.

As with FJ, several theorems follow immediately from The-
orem 1 and Theorem 2. FJ-ADE is type sound, in that all
terminating program executions either compute a value or
get stuck at an incorrect cast. Furthermore, cast-free pro-
grams do not get stuck and thus always proceed to produce
a value if they terminate. Since these theorems follow so
directly, the precise definitions and theorem statements are
omitted.

Finally, strict type checking abides by its name: strict type
checking is strictly more strict than transitional type check-
ing.

Theorem 3. (Strict Checking). Suppose CT is strict-
OK. If strict; Γ ` e : C, then trans; Γ ` e : C. Further,
CT is also trans-OK.

5.2 Safe transitions
This section shows how to use the strict and transitional
modes of FJ-ADE to evolve interfaces safely. There are two
properties given which show when it is safe to add a dep-
recated or encouraged method, thus entering a transition
period. Following, there are two theorems showing that,
when a program strictly checks, it is safe to remove depre-
cated methods as well as to upgrade encouraged methods to
abstract methods. Finally, there are four theorems showing
that when the four described safe changes are made, the re-
sulting programs not only type check but continue to behave
identically.

The notation needs extra precision, because these properties
all involve two programs. There are two versions of each re-
lation and function, one for each program under discussion.
To disambiguate between the two versions when it is not
clear from context, the program is used as a subscript. For
example, abstractCT (C0) means that C0 is abstract in pro-
gram CT , and str ; Γ `CT ′ x : e means that x type checks in
program CT ′ with checking mode str.

All of these properties discuss a single program being up-
dated from one version to the next. However, as discussed
in Section 2, the properties are carefully written to support
updating single classes when that class is going to be used
in many different programs.

Specifically, the two introduction theorems, require only tran-
sitional type checking plus properties of the superclasses of
the modified class. Thus, transitional changes can be intro-
duced safely so long as the superclasses of the changed class
are immediately available. Further, the requirements on su-
perclasses are weak enough that the superclasses can them-
selves be modified according to the introduction theorems
without invalidating the requirements of the introduction
theorems.

The two removal theorems, to contrast, require that all in-
teresting programs be strictly checked before it is safe to
perform the removal. This is potentially a lot of work, but
the programs do not need to be tested all at once. They can
be tested one by one throughout the transition period, as
each collaborating development group finds time.

Theorem 4. (Deprecation Introduction). Let CT be any
class table that is trans-OK, class A be a class in CT , and
m be a method of class A. Suppose that if m overrides a
method, then that method is either encouraged or deprecated,
i.e. if A extends B then ¬mavail(m, B, false, false). De-
fine CT ′ as the same class table as CT except that m is
deprecated in class A. Given these assumptions, whenever
trans; Γ `CT e : C, it is also true that trans; Γ `CT ′ e : C.
Further, CT ′ is trans-OK.

Theorem 5. (Encouragement Introduction). Let CT be
any class table that is trans-OK, and let A be a class in CT
which does not define or inherit a non-encouraged method
named m, i.e. it is the case that ¬mavail(m, A, false, true).
Define CT ′ to be the the same class table as CT except that
A has the following additional method definition:

B m(B̄ x̄) encouraged

Then, whenever trans; Γ `CT e : C, it is also true that
trans; Γ `CT ′ e : C. Further, CT ′ is trans-OK.

Theorem 6. (Deprecation Removal). Let CT be any class
table that is strict-OK, and let A be a class in CT which de-
fines a method named m that is deprecated. Define CT ′ to
be the same class table as CT except that m is removed from
A. Then, whenever strict; Γ `CT e : C, it is also true that
strict; Γ `CT ′ e : C. Furthermore, CT ′ is strict-OK.

Theorem 7. (Encouragement Upgrade). Let CT be a
class table that is strict-OK, and let A be a class in CT
which has the following method definition:

B m(B̄ x̄) encouraged

Define CT ′ to be the same class table except that the above
method definition is replaced by this one:

B m(B̄ x̄) abstract

abstract class A {

abstract int foo(int x);

}

class B extends A {

/**

* @deprecated

*/

int foo(int x) {

return x+1;

}

}

class Client {

void run() {

A a = new B();

}

}

Figure 14: Removing a method can cause a class to
become abstract. Instantiating such a class should
cause a deprecation warning.

Then, whenever strict; Γ `CT e : C, strict; Γ `CT ′ e : C.
Furthermore, CT ′ is strict-OK.

Theorem 8. Let CT and CT ′ be as in Theorem 4. If
e −→CT e′ and trans; Γ ` e : C, then e −→CT ′ e′.

Theorem 9. Let CT and CT ′ be as in Theorem 5. If
e −→CT e′ and trans; Γ ` e : C, then e −→CT ′ e′.

Theorem 10. Let CT and CT ′ be as in Theorem 6. If
e −→CT e′ and strict; Γ ` e : C, then e −→CT ′ e′.

Theorem 11. Let CT and CT ′ be as in Theorem 7. If
e −→CT e′ and strict; Γ ` e : C, then e −→CT ′ e′.

6. WEAKNESSES IN CURRENT TOOLS
Today’s practical deprecation checkers do not flag all code
that can fail if a deprecated method is removed. Instead,
they detect only direct accesses to deprecated features. This
section examines four general categories of checks that a
full transition checker should include. Along the way, this
section examines the level of support of each category in Sun
javac version 1.5.0 06 and Eclipse 3.2.

Method invocation
In strict mode, the T-Invk rule does not allow a message-
send expression to invoke a method that is deprecated. Cur-
rent checkers capture this familiar rule.

Post-abstract methods
In strict checking mode, the T-New rule does not allow
instantiating a post-abstract class, i.e. a class that might
be abstract after a transition phase is left. An example is
given in Figure 14. Class B is not abstract currently, but
it will be come abstract once the deprecated method foo is

class A {

void frob() {

System.out.println("frobbed!");

}

}

class B extends A {

int accesses = 0;

/**

* @deprecated

*/

void frob() {

accesses += 1;

super.frob();

}

}

class Client {

void run() {

A a = new B();

a.frob();

}

}

Figure 15: Deprecating a method that overrides a
concrete method can result in invariants being bro-
ken.

removed. Thus, while B is not abstract currently, it will be
after its deprecated method is removed. A proper transition
checker should issue a warning for code that instantiates B,
because such code will no longer function if the deprecated
method is removed. No warning is given, though, by javac

or Eclipse.

Deprecated methods and overriding
Not all overrides of abstract, encouraged, and deprecated
methods are allowed. Deprecated methods should only over-
ride other deprecated methods, abstract methods, and en-
couraged methods.

An example problem appears in Figure 15. The code in
class C type checks by considering method A.foo, but at
run time it invokes B.foo. If method B.foo is removed, then
the behavior of the program will change and B’s invariants
might be broken. If this behavior change is truly acceptable,
then B.foo should be removed instead of deprecated. Again,
javac and Eclipse do not issue a warning for this code.

Encouraged methods and overriding
The requirements on encouraged methods are discussed in
Section 3. Anti-deprecation is not supported at all in exist-
ing tools.

7. RELATED WORK
There has been substantial work supporting interface evo-
lutions that are refactorings [4, 1, 10, 15]. When such work
applies, the benefit can be immense, because the transition
period can be shortened or even eliminated. Nonetheless,
many desirable interface changes are not refactorings at all.

For example, not all uses of deprecated methods can be
rewritten to use non-deprecated methods. Sometimes the
basic functionality is being removed. For such changes, some
kind of transition period is necessary, and checking tools can
help entering and leaving those transition periods safely.

There has been work on language features to help manage or
eliminate incompatibilities due to interface upgrades. The
reuse contracts of Steyaert, et al., allow detection of a vari-
ety of upgrade problems when given only the new version of
an interface and not the old one [20]. The override keyword
of C# and Scala prevents accidental override of newly added
methods in a superclass [7, 22, 13, 16]. The present work
focuses more on managing the transition periods than on de-
tecting or ameliorating problems after an interface changes.

Interface definitions of various kinds have long supported
recording deprecation. Two examples for programming lan-
guages are Java’s deprecation annotations [3] and Eiffel’s
obsolete keyword [8]. The present work uses the same con-
cept but adds anti-deprecation.

Dig and Johnson have quantitatively studied the kinds of in-
terface changes that occurred during the lifetime four soft-
ware systems [6]. The authors start with the developers’
change logs and the version control systems for each soft-
ware system, and then use these data sources to identify the
relative frequency of several kinds of API changes. For ex-
ample, they classify over 80% of the API changes as some
kind of refactoring. Software science such as this provides
invaluable input for those designing transition mechanisms
that are to be useful in practice.

8. FUTURE WORK
The present work is entirely theoretical. It remains future
work to try the encouraged annotations and the new check-
ing rules in practice. Two platforms are promising for such
a study: Eclipse and Scala Bazaars [17, 19]. Eclipse, as pre-
viously discussed, is a very widely used platform with many
components developed independently. Scala Bazaars is a
code-sharing network for Scala users. Users share Scala code
compiled to Java bytecodes, and the compiled libraries all
too frequently become incompatible due to seemingly trivial
changes in the inter-library interfaces.

The theoretical work is also not complete. First, there are
still interface evolutions that are impossible to check with
FJ-ADE. For example, the checker does not support changes
in constructor signatures nor changes in the classes that are
inherited. It remains future work to investigate transition
checking rules that are more general.

Additionally, this theory’s checker produces a coarse result:
either all changes may proceed, or none. Future work will
check each change individually instead of having a bulk
strict versus trans checking mode. One formalism that
looks promising is to replace the checking mode with a hold
set, where the hold set includes the set of changes which
may not yet progress. If checking succeeds with a method
left out of hold, then that one method may be updated even
if the others are not ready. Given such a mechanism, new
transition periods can begin while old ones are in the middle,
without adding an additional obstacle to the old transition

period.

Finally, a number of techniques complement evolution check-
ing. Detection remains important: how do developers be-
come aware that they are making an interface change? In-
terfaces themselves can be more flexible: e.g. there could be
a construct, analogous to instanceof, for dynamically test-
ing whether an object implements an encouraged method.
Organizational questions arise as well. For example, is it
helpful in practice to record a default “interface evolution
rate” at the package level, or should every change have its
own rate recorded, or should the tools avoid this question
entirely?

9. CONCLUSION
Interface evolution is a recurring practical problem. This
article investigates one technique, static checking for depre-
cation and anti-deprecation, which can make interface evo-
lution more graceful. Even these simple method-level evo-
lutions exhibit some subtlety, and the formal study brings
out weaknesses in existing tools.

This work is only a beginning, though. Checking tools can
potentially check more than method additions and removals.
Furthermore, checking tools themselves are just one tool in
the toolbox for developers to address interface evolution.

10. ACKNOWLEDGMENTS
Thank you to the anonymous reviewers. Your careful read-
ing and feedback have made this article much more readable
and relevant.

11. REFERENCES
[1] Ittai Balaban, Frank Tip, and Robert Fuhrer.

Refactoring support for class library migration. In
Proc. of Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2005.

[2] Douglas Bell. Software Engineering: A Programming
Approach, chapter 6: Modularity. Addison Wesley, 3rd
edition, 2005.

[3] Gilad Bracha, James Gosling, Bill Joy, and Guy
Steele. The Java Language Specification. Addison
Wesley, 3rd edition, 2005.

[4] Kingsum Chow and David Notkin. Semi-automatic
update of applications in response to library changes.
In Proc. of International Conference on Software
Maintenance (ICSM), 1996.

[5] Jim des Rivières. Evolving Java-based APIs.
http://www.eclipse.org/eclipse/development/

java-api-evolution.html.

[6] Danny Dig and Ralph Johnson. The role of
refactorings in API evolution. In Proc. of
International Conference on Software Maintenance
(ICSM), September 2005.

[7] ECMA. ECMA-334: C# Language Specification.
European Association for Standardizing Information
and Communication Systems (ECMA), second
edition, December 2002.

[8] ECMA. ECMA-367: Eiffel: Analysis, Design and
Programming Language. European Association for
Standardizing Information and Communication
Systems (ECMA), 2nd edition, June 2006.

[9] Steve Freeman, Tim Mackinnon, Nat Pryce, and Joe
Walnes. Mock roles, not objects. In Companion to the
ACM conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA),
New York, NY, USA, 2004. ACM Press.

[10] Johannes Henkel and Amer Diwan. Catchup!
Capturing and replaying refactorings to support API
evolution. In Proc. of International Conference on
Software Engineering (ICSE), 2005.

[11] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler.
Featherweight Java: A minimal core calculus for Java
and GJ. In Proc. of Object Oriented Programming:
Systems, Languages, and Applications (OOPSLA),
October 1999.

[12] Tim Mackinnon, Steve Freeman, and Philip Craig.
Endo-testing: Unit testing with mock objects. In Proc.
of eXtreme Programming and Flexible Processes in
Software Engineering (XP), 2000.

[13] Martin Odersky, Philippe Altherr, Vincent Cremet,
Burak Emir, Sebastian Maneth, Stéphane Micheloud,
Nikolay Mihaylov, Michel Schinz, Erik Stenman, and
Matthias Zenger. An overview of the Scala
programming language. Technical Report IC/2004/64,
EPFL, 2004.

[14] William F. Opdyke. Refactoring Object-Oriented
Frameworks. PhD thesis, University of Illinois at
Urbana-Champaign, 1992.

[15] Jeff H. Perkins. Automatically generating refactorings
to support API evolution. In Proc. of Program
Analysis for Software Tools and Engineering
(PASTE), September 2005.

[16] Scala web site. http://scala.epfl.ch.

[17] Scala Bazaars web site.
http://www.lexspoon.org/sbaz.

[18] Alexander Spoon. Anti-deprecation: Towards complete
static checking for api evolution (extended version).

Technical Report LAMP-REPORT-2006-004, École
Polytechnique Fédérale de Lausanne (EPFL), 2006.

[19] Alexander Spoon. Package universes: Which
components are real candidates? Technical Report
LAMP-REPORT-2006-002, École Polytechnique
Fédérale de Lausanne (EPFL), 2006.

[20] Patrick Steyaert, Carine Lucas, Kim Mens, and Theo
D’Hondt. Reuse contracts: Managing the evolution of
reusable assets. In Proc. of Object Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 1996.

[21] Bill Venners. A conversation with Erich Gamma, part
III. http://www.artima.com/lejava/articles/
designprinciples.html, June 2005.

[22] Visual C# web page.
http://msdn.microsoft.com/vcsharp/.

