
Dynamic Data Polyvariance
Using Source-Tagged Classes

S. Alexander Spoon
lex@lexspoon.org

Olin Shivers
shivers@cc.gatech.edu

Abstract

The DDP (Demand-driven/Pruning) analysis algorithm allows us
to perform data-flow analyses of programming languages that are
dynamically typed and have higher-order control flow, such as
Smalltalk or Scheme. Because it is demand-driven and employs
search pruning, it scales to large code bases. However, versions of
the algorithm previously described [19] do not handledata poly-
morphismwell, conservatively merging separate data flows that
go through distinct instantiations of a collection type. In this pa-
per, we describe a new extension toDDP that helps to disentangle
these flows, permitting more precise results. The extension is based
on source-taggingclasses so that each reference to a class in the
source code yields a subdivision of the type associated with that
class. An initial implementation of this polyvariant analysis has
been added to theDDP-based tool Chuck, a part of the integrated
Squeak program-development environment; we show examples of
the tool in action.

1 Data polymorphism and analysis precision

In his dissertation, Agesen distinguished two kinds of polymor-
phism that occurred in object-oriented programs [3]. Parametric
polymorphismarises when different classes provide different code
to handle the same message.Data polymorphism(in Agesen’s
words) describes “the ability of a slot (instance variable) to hold
objects with multiple object types.” Generic “container” or “col-
lection” classes such as lists, tables and arrays are the standard ex-
ample of data polymorphism: the oneVector class can be used
to create both an integer vector and a string vector.1 As Agesen
pointed out, data polymorphism can induce significant loss of pre-

1This terminology may be slightly confusing to programmers
from the Hindley-Milner type-inference camp, who would more
likely use the term “parametric polymorphism” to describe what
Agesen calls data polymorphism. We hew to Agesen’s terminology,
since the analyses we’re describing in this paper primarily concern
object-oriented languages, and are related to Agesen’s work.

Submitted to DLS’05.

cision in analyses that perform, or are dependent on, type inference.
A data-flow analysis in this setting will typically merge the types of
all the values that flow into distinct instances of some collection
class. From the analyzer’s point of view, if an object flows intoone
instance of a collection class, it will then flow out ofeveryinstance
of that collection class. So, for example, if the program has two
completely distinct vectors, one containing integers and the other
containing strings, analysis will show that a single fetch from ei-
ther of these vectors could produce either an integer or a string.
The loss of precision can hurt important analyses for dynamic lan-
guages, such as control-flow analysis [16, 17], type inference [3]
and dead-code removal [3, 21].

To address this problem, one can enrich the analyzer’s type system
to partition objects more finely than by class. Instead of all in-
stances of classVector being in the same type, those instances can
be subdivided into the types (Vector,l1), (Vector, l2), . . . , (Vector,
ln) for some sequence of discriminatorsl1 . . . ln. The difference is
shown inFigure 1andFigure 2. This partitioning segregates flow
paths that go through the class: flow into any object of type (Vector,
l i) can only flow out of an object of that same type.

The choice of partitioning matters. A good partition leads to a flow
graph like that inFigure 2, whereas a poor one leads to a flow graph
like that inFigure 3.

For languages constrained by generous amounts of static seman-
tics (such as Java [7]), an effective partitioning strategy is that of
Wang and Smith’sDCPA algorithm: subdivide objects according to
whichnew expression instantiated them [23]. This approach yields
a true partition because every object must have been instantiated
by exactly onenew expression; objects created on line 134 must be
different from objects created on line 431.

For extremely dynamic languages such as Smalltalk, however, this
approach is ineffective by itself. The problem is that, in Smalltalk,
object creation is not a primitive syntactic form. It is a single
primitive method (calledbasicNew) that is triggered indirectly by
various instance-creation methods around the program.2 Smalltalk
classes are themselves objects, and this is exploited in the object-
creation protocol, with the classes being passed through the creation
chain to the actualbasicNew step.

This paper describes a partitioning strategy that is effective in the
presence of the dynamic and reflective facilities of a language such
as Smalltalk. The approach is based ontaggingclass objects with
context information taken from abstract semantics that can be used
to segregate instances of the class.

2We are simplifying slightly for clearer exposition.

1

Vector

a c

d e f

b
Figure 1. Without data-polyvariant analysis, a type inferencer
intermixes all flows that go through a class’s instance variables.
For example, according to this analysis-level flow graph, objects
in flow position a might flow to any of d, e, or f.

a c

d e f

b

Vector<2> Vector<3>Vector<1>

Figure 2. If instances of a class can be partitioned, then a type
inferencer can, to an extent, segregate flows through the class’s
instance variables. For example, objects in flow positiona can
now be seen to flow tod but not to positionse or f. On the other
hand, flow from b still reaches three positions. This partitioning
improved the flow analysis ofa and c but not of b.

2 Source-tagged classes

Source-tagged classesgive a way to approximate the partitioning
approach of the provenDCPA algorithm, even though Smalltalk
only has onebasicNew method instead of Java’s many separate
new expressions throughout the program. The approach exploits
the common idiom that most objects are created with a message-
send expression whose target is the immutable global variable that
is the primary reference to the class object. Common examples are
“ValueHolder new” and “Point x: 3 y: 5.” In this idiom, the
constructor method (new andx:y: in these two examples, respec-
tively) invokes thebasicNew method on the class to instantiate the
class and then invokes a sequence of methods on the resulting ob-
ject to initialize that object with the specified parameters.

The partitioning approach of this paper, then, is to attach asource
tag to all distinct references to classes in the source.Figure 4and
Figure 5depict the general idea. Each location in the program text
where the class is mentioned has its own source tag. The abstract
semantics associated with the type inference evaluates such a class
reference to its tagged value. The tag is preserved as the abstract
value flows through the program during the analysis’ abstract inter-
pretation. When an object is instantiated by sending the primitive
basicNew method to the class object, the tag is transferred to the
abstract object thus created. Thus we get the effect ofDCPA in this
more dynamic setting: two different occurrences of “ValueHolder
new” in the source code will cause two distinct abstract values to be
created by the analysis. Hence, when an abstract value later flows
into one of these two instances, it won’t erroneously “tunnel” over

a c

d e f

b

Vector<8> Vector<9>Vector<7>

Figure 3. This poor choice of partitioning leads to a more
expensive analysis with no improvement in precision. As in
Figure 1, the analyzer will predict that flow from any of a, b,
or c can reach any ofd, e, or f.

class

class

class

3@4

1@5

6@2 Point

Figure 4. The semantics of Smalltalk are that classes are shared
and singular. All instances of classPoint (3@4, 6@4, etc.) have
a reference to the same class object.

to the other one.

Note that we are assuming enough abstract-context information is
present in the basic analysis to distinguish message sends that occur
in type-distinct contexts (that is, the kind of distinction we already
get from Agesen’s CPA analysis). Our concern here is only to dis-
tinguish distinct instantiations of a class that have the same type in
the base analysis.

3 DDP

The source-tagged technique we present in this paper is an exten-
sion to a “base” algorithm that is capable of basic data-flow anal-
ysis in the presence of the dynamic-language features we wish to
support. The algorithm we are using for our base isDDP [19],
a new analysis framework specifically designed for performing
data-flow analyses on higher-order, dynamically typed languages,
such as Smalltalk [4, 11] or Scheme [1]. Besides its ability to
handle the analytic challenges of these languages,DDP’s other
strength is that it scales well to large code bases. For example,
the Squeak [10] open-source implementation of Smalltalk now in-
cludes aDDP-based tool, Chuck, to provide type inference and
semantic-navigation services to the Squeak program-development
environment. Chuck provides interactive performance, replying to
individual queries over the entire 300,000-line Squeak code base in
under five seconds; this level of service is supported when queries
are interleaved with changes to the code base [20].

DDP provides this kind of performance by means of two key ideas
taken from technologies developed by the AI community, which
has long been accustomed to performing heuristic searches in in-

2

class

class

class

3@4

1@5

6@2

Point<1>

Point<2>

Figure 5. For DDP/CT, we can imagine that there are multi-
ple copies of each class, one for each location the class is men-
tioned in the source code. Each copy is indistinguishable to reg-
ular program code—even the equivalence operator (==) does
not distinguish them—and thus the compiler does not need to
explicitly represent the tags. The tags are present in the ab-
stract semantics, however, and can be reasoned about by a type
inferencer.

type flow

senders responders

backwards forward

data flow

control flow

Figure 6. The four queries DDP/CT can answer along with their
dependencies on each other.

tractable spaces. First,DDP does not analyze the entire program
in one invocation. Rather, it is ademand-drivenanalysis that does
goal-directed backwards search to satisfy a specific request for in-
formation. Thus, a particular analysis will typically traverse only a
very sparse fragment of the entire code base, allowing for sub-linear
run times.

Second,DDP copes with searches that become intractable byprun-
ing the goal tree. Subqueries occurring far from the root query are
trimmed by providing them with answers approximate enough to be
cheaply computable with no further subgoal recursion. The heuris-
tic exploited here is that imprecision can be more easily tolerated
far from the root goal than close to it, analogously to the way that
chess-playing algorithms use expensive, exhaustive searches early
in the search tree but cheap, approximate evaluations deep into the
search tree.

3.1 DDP goals

DDP uses four kinds of goals, or queries, to construct a goal tree
satisfying an initial root query.

1. A flow queryasks where the value of a computation could
flow.

2. A type queryasks what kinds of values could flow to a given
expression.

3. A responders queryasks where control could go at a given
method invocation.

4. A senders queryasks which program points could transfer
control to a given class method.

These four queries directly correspond to the cross product
of {backward,forward} with {data,control}-flow, as shown in
Figure 6.

Subgoal recursion occurs when the means of answering a particu-
lar goal requires answering one or more subgoals. The arrows in
Figure 6show dependencies between goals and their subgoals. For
example:

• A flow query for the argument in a message-send expression
depends on a responders query in order to find the methods to
which the argument could flow. Thus, there is an arrow in the
diagram from flow queries to responders queries.

• A type query for a message-send expression depends on a re-
sponders query in order to find what methods might respond
and thus contribute a type to the message-send expression.

• A responders query depends on a type query in order to de-
termine the type of the receiver of the message send, which in
turn is needed to predict which methods might respond to the
message send.

• A senders query depends on type queries in order to filter can-
didate message-send expressions by the type of the receiver.

Note that most arrows in the diagram go from a control-flow query
to a data-flow query or vice versa. Control- and data-flow are tightly
interwoven in higher-order, dynamic programming languages [17].

Flow queries

A flow queryasks where the value produced by some variable or
expression will flow when code in the code base runs. This in-
formation is useful to see where something is ultimately used. For
example, a user can select the variableRadiansPerDegree in class
Float, ask where the value in the variable flows, and be told that
it flows to the methodsradiansToDegrees, degreesToRadians,
*, and/ in classFloat. By reading the code of these methods, the
user can see thatradiansToDegrees anddegreesToRadians re-
fer to the variable in order to convert angles between radians and
degrees, and in turn those two methods pass the number to the*
and/ methods.

The answer to a flow query is a set offlow positions. The following
flow positions are possible:

• Variables
For example,Display is a flow position designating the val-
ues assigned to theDisplay global variable during program
execution.

3

• Expressions
Any expression is a flow position designating the values the
expression might produce at run time.

• Methods
For example, methodnext of classRandom is a flow position
designating values held by the receiver (self) of the specified
method.

These flow positions are additionally discriminated by static con-
texts as described below insubsection 3.2.

For efficiency reasons, the valueAnywhereholding all possible flow
positions is implemented as a special case requiring only constant
space to represent and constant time to process.

Type queries

A type queryasks what kind of values a variable or expression will
hold when the code base runs. The answer to a type query is a set
of “concrete types” from the program:

• Individual class
For example,PlayingCardDeck is a valid type which in-
cludes all instances of that class.

• Individual symbol
For example,#straight is a type which includes only the
symbol object namedstraight. Tracking symbols is im-
portant (1) to handle their use to representad hocenumer-
ated types and (2) to handle Smalltalk’sperform: dynamic-
dispatch facility, which is a key control-flow idiom used in
real Smalltalk programs.

• Individual block
A block type specifies a particular block from the source code.
Smalltalk blocks are akin to Scheme lambda expressions. A
block type includes all closure objects which were created
by evaluating the specified block. Note that handling blocks
with precision is critical for analysis of Smalltalk programs.
Smalltalk blocks are first-class values used in a pervasive and
fine-grained way. For example, the basic if/then/else construct
in Smalltalk is provided by sending two block objects to the
boolean selector. Failure to handle blocks in a polyvariant
manner would confuse together the control flow of every con-
ditional branch in the entire code base.

Like flow positions, type queries are additionally discriminated by
abstract-contour context, which is particularly important for higher-
order values such as blocks.

For efficiency reasons, the top typeAnythingholding all possible
objects is implemented as a special case, requiring only constant
space to represent and constant time to process.

Responders queries

A responders queryasks what methods or blocks might respond
when a particular message-send expression executes. As an ex-
treme example, if one browses to classBasicLintRuleTest’s new
method in the Squeak code base, and selects the message send of
initialize, the standard syntax-directed query shows 756 poten-
tial responders. The Chuck tool usesDDP to answer the responders
query and shows only one.

Senders queries

A senders queryasks what expressions might invoke a specified
method or block. To find the senders of a method, the analyzer
must determine not only that the message sent by the expression is
the right name, but that the object that is the target of the expres-
sion’s send is the right class. For example, performing a senders
query on an HTML class’sparse method shouldnot include ex-
pressions in the code base that send theparsemessage to VRML or
email objects. Type information is a powerful discriminator here—
methods with common names such asinitialize often have only
one sender according toDDP, but hundreds of senders according to
simple syntactic criteria.

3.2 Context

Like many program-analysis algorithms,DDP can analyze the
same syntactic element (expression, variable, method, . . .) under
multiple contextsor abstract contours. This general approach is
widely used in program analysis [12]. A context, in general, can be
viewed as a predicate on the execution states associated with a con-
trol point. Contexts allow an analysis to keep distinct facts about
program execution states, and their consequences, that may share a
common control point.

One widely studied kind of context is thecall chain [15]. A call
chain specifies the dynamically nested sequence of procedure calls
or message sends that are pending at the given execution state. For
example, “the immediate caller is statement 3 of methodfoo,” or
“the immediate caller is statement 3 of methodfoo, and its caller is
statement 4 of methodbar.” The length of the call-chain segment to
which the analysis is sensitive is typically limited by a constant that
is a parameter of the analysis algorithm. The number of contexts
per control point can be exponential in the length of the call chains,
with an exponent base that is linear in the size of the program. Two
of the many algorithms that use call chains arek-CFA [18] and
Emami’s points-to analysis [5].

The kind of context used byDDP, however, might be called
parameter-types context. A parameter-types context specifies the
types of method parameters in the current lexical scope, e.g., “the
first parameter is anInteger and the second is aFloat.” In an
object-oriented language, a parameter-types context can also spec-
ify the type of the method receiver, e.g., “the receiver is anInteger
and the first parameter is aFloat.” In a language with blocks (or
lambda expressions), a parameter-types context is more general and
can additionally include types for a chain of lexically nested blocks
within a method.

The key to this kind of contour abstraction is that, in object-oriented
and dynamically-typed languages, control flow (e.g., method dis-
patch) fundamentally depends upon this kind of type or class infor-
mation. Type-based contour abstractions provide precisely the kind
of discrimination that is needed to analyze the basic flow behaviour
of a program.

There are subdivisions within the general approach of parameter-
types contexts. The Cartesian Products Algorithm (CPA) uses con-
texts where each parameter type is a specific class; thus, the con-
texts for each method correspond to the cartesian product of the
classes in the type of each parameter [2]. To contrast, the Simple
Class Sets (SCS) algorithm chooses one parameter-types context
for each combination of types that appear at some call site in the
program [8]. DDP usesCPA-style parameter-type contexts. As a

4

result, it is sometimes necessary to subdivide a context into multi-
ple partitions in order to fit the constraint ofCPA and then analyze
separately under each partition.

Context is interwoven throughout the analysis. Almost every place
that a syntactic element appears, it is adjoined to an abstract context:

• Flow positionsare specified not only as a variable, expression,
or (in the case of self-of-method positions) a method, but also
with context. For example, one possible flow position would
be “variablex of methodfoo:, under a context wherefoo:’s
parameter is aSmallInteger.” The presence of context in
flow positions means that flow queries can produce more spe-
cific responses than they otherwise could. Instead of simply
describing the variables through which a value can flow, they
can describe the types of objects that will be present in the
environments (lexical scopes) surrounding those variables.

• Block typesmention not only a block, but also a context in
which the block expression was evaluated. This context can
specify the types of any parameters that are in scope of the
block. Later, when the block’s contents are analyzed, the anal-
ysis can be improved by using the recorded types of those pa-
rameters. As with flow positions, having a context associated
with a block type allows the answer to a type query to include
not only the blocks to which a variable might refer, but also
the types of objects in the environment around that block at
the time the block was created.

• Type queriescan ask about a variable in context instead of
just a variable. For example, a type query can ask, “what is
the type ofx under a context where the first parameter of its
lexically containing method is aSmallInteger?” This is a
critical form of analysis polyvariance for polymorphic code.

• Responders queriesuse context both for the queries and the
responses. The queries can include a context along with the
message-send expression. The responses include not only a
set of methods and blocks that can respond to the message
send, but also the contexts under which they might respond.
As an example, the query “who responds tox + y, in a con-
text wherex is aSmallInteger?” could have as an answer,
“+ in classSmallInteger, where both the receiver and the
first argument areSmallInteger’s.”

• Senders queries, likewise, can return a set of expressions that
can invoke a method or block along with the context where
those expressions might invoke the method or block.

As a minor technical note, not all contexts can be applied to all vari-
ables, expressions, or flow positions—a context may only specify
types for parameters that are in the scope of the associated syntac-
tic item. As a result, it is sometimes necessary tobroadena context
before it can be applied to one of these items. Frequently when we
write that an item should be considered in some contextctx, we re-
ally mean that it should be considered in contextctx′ wherectx′ is
a broadening ofctx to be sensible for the item under discussion.

4 Standard solution strategies

This section describes the previously unpublished solution strate-
gies that the baseDDP uses to solve the above kinds of goals.
These strategies follow straightforwardly once the goals and their
answers have been formulated. The strategies are listed below in
order to show the structure and interplay of the base analysis’ de-
ductions, which will set the stage for developing the new extensions
described in the following section.

While reading these solution strategies, be aware that goals are
solved under the assumption that their subgoals have correct ten-
tative solutions. This assumption is usually false the first time a
goal is updated, because all of the goal’s subgoals are freshly cre-
ated and almost certainly have over-specific tentative solutions. As
the analysis progresses, such a goal will be revisited when its sub-
goals have more reasonable tentative solutions. The algorithm does
not terminate until the entire goal network has stabilised into a con-
sistent solution to the top-level, root query. Thus, it is easiest on a
first reading of these solution strategies to assume that all subgoals
requested have complete and correct answers—just as the analyzer
does.

4.1 Responders queries

A responders query is of the form, “what methods or blocks reply
to the message-send expression ‘rcvr sel arg0. . .argn’ if the ex-
pression is executed in contextctx?” This expression requests that
the method namedsel of the objectrcvr be invoked, and that the
method be passedarg0. . .argnas arguments.

To answer a responders query,DDP begins by posting type queries
for rcvr and for each of the argumentsarg0, . . . ,argn. The solution
to the type query onrcvr is used to determine which methods and
blocks respond, while the argument types are used to determine the
context under which those methods and blocks will execute.

To find the responding methods, the analyzer considers every class
that is a member of the receiver’s type and finds the method that
will respond if messagesel is sent to an instance of the class. If
the responding method happens to be one of the primitive block-
evaluation methods (value, value:, etc.), then the analyzer exam-
ines the receiver type to determine what blocks are included in the
receiver and thus what blocks can respond.

To find the possible responding contexts,DDP begins by taking the
cartesian product of the receiver type and all of the argument types,
just asCPA does. For methods that respond to the message-send,
these cartesian products can be used directly, and the algorithm re-
turns the cartesian product of the responding methods and each re-
sponding context.

For blocks that respond, the contexts cannot be used directly. A fur-
ther step is required to create the responding contexts. Each context
from the cartesian product of the receiver type argument types is
combined with context associated with each block type in the re-
ceiver type. The context from the cartesian product supplies the
types of the block’s own parameters, while the types in the block
type’s associated context supply the type of the receiver and the
types of parameters that are lexically visible from within the block.

4.2 Senders queries

A senders query asks, “what message-send expressions invoke
the block or methodmethblk?” The answer to this question in-
cludes three kinds of sending expressions: regular message sends,
perform: message sends, and block evaluations.

Regular message sends are the most straightforward of the three to
find. If methblkis a block instead of a method, then there are no
regular message sends that invoke it. Otherwise,DDP begins by
finding all message-send expressions whose selector matches the
method’s selector. For each such expression, it posts as a subgoal a
type query that attempts to find the type of the receiver. If sending

5

the method’s selector to objects in that type could possibly invoke
methblk, then that message-send expression is considered a possible
sender ofmethblk.

Smalltalk methods can also be invoked indirectly via theperform:
family of methods. When the baseObject class’sperform:
method is invoked at run time, the first argument to the method
must be a symbol object that names another method to execute. The
system then sends the message named by the symbol to the current
receiver with the following arguments used as the parameters.DDP
makes a simplifying assumption in order to make senders-of goals
tractable in the face of theperform: method.DDP assumes that
at the normal application run time, all symbols passed into such a
method appear somewhere in the program text. That is, DDP does
not consider control flow that might arise from the program com-
puting a string, converting the string to a symbol, and then invoking
a method by means of an indirect message send viaperform: with
the computed symbol. This restriction renders the analysis feasible,
but still captures the idiomatic uses ofperform: pervasive in cer-
tain kinds of Smalltalk code (e.g.,perform: dispatch is critical in
the construction of GUI event loops in Smalltalk applications).

Proceeding from this assumption,DDP findsperform: senders by
tracing flow forward from each occurrence of the method’s name
as a symbol literal; this is done by recursively posting a flow query
for each such literal. Most method names do not appear as a sym-
bol anywhere in the program, in which case there are noperform:
senders of that method. For method names that do appear as symbol
literals, the analyzer sifts through the responses to the flow query,
finding all message-send expressions where the first argument could
be the symbol; it then uses a type query to check whether that
message-send expression might invoke aperform: method. If it
might, then that message-send expression is considered a possible
invoker ofblkmeth.

Finally, for the third kind of message send, ifblkmethis a block,
then it is invoked via a block-evaluation primitive method (value,
etc.). To find such senders,DDP traces the flow ofblkmethusing
flow queries. At each message-send expression where the object
flows to the receiver, the analyzer checks where a block evaluation
method might be invoked by that message-send expression. If so,
then the message-send is considered a potential sender ofblkmeth.

4.3 Type queries

A type query is of the form, “to what type of objects doesvarexp
evaluate in contextctx?” To answer this question,DDP considers
six kinds of syntax: literals, references to classes,self, assignment
statements, parameters, and message-send expressions.

If varexp is a literal then the type inferred forvarexp is simply
the type of the literal. If the literal is a small integer, then the in-
ferred type is{|SmallInteger|}; if it is a string, the inferred type
is {|String|}; and so on.

If varexpis a reference to a class, then the inferred type is the meta-
class for that class. For example, ifvarexpis Array, then the in-
ferred type is{|mclass(Array)|}, wheremclass(Array), often writ-
tenArray class, is the class ofArray itself.

If varexpisself, a reference to the current receiver, thenDDP uses
one of two simple strategies. Ifctx specifies a type other thanAny-
thing for the current receiver, then that type is inferred as the type
of varexp. Otherwise, the type inferred forvarexpis the union of

the receiving method’s class along with all of its direct and indirect
subclasses.

If varexpis a variable that is modified by assignment statements,
thenDDP posts as subgoals a type query for each right-hand side
that is assigned tovarexp. The context used for each type-query
subgoal isctx itself. The type ofvarexpis inferred to be the union
of the types of the right-hand sides.

If varexpis a parameter, then it is not modified by assignment state-
ments. Instead, it takes on values by message-send expressions:
message sends provide arguments that are bound to the parameters
of the responding method. Ifvarexphas a type specified inctx, then,
as with the similar case forself, DDP simply uses the type speci-
fied byctx. Otherwise,DDP posts as a subgoal a senders query to
determine what expressions invoke the method or block for which
varexp is a parameter. Once those expressions are located,DDP
posts a type query for the actual arguments that correspond tovar-
exp—e.g., if varexp is the third parameter of its binding method,
then the corresponding actual argument would be the third argu-
ment for regular senders and the fourth argument forperform:
senders. The type inferred forvarexpis then the union of the types
of all of the corresponding actual arguments.

Finally, if varexpis a message-send expression, thenDDP needs to
find the methods or blocks that respond to the message send. Thus
DDP begins solving the goal, in this case, by posting a responders
goal onvarexp. The responders goal returns a number of meth-
ods and blocks, each paired with a context. For each block/context
pair,DDP issues a type query on the last expression in the block—
that is, the expression providing the block’s return value. Similarly,
for each method/context pair,DDP scans the method to locate the
method’s return statements, and issues a type query for each return
expression. The inferred type forvarexpis the union of the solu-
tions to all of these type queries.

4.4 Flow queries

A flow query is of the form, “where do values flow, starting from
fpos?” DDP solves these queries by reducing them toone-step flow
queriesof the form, “where can values flow fromfpos, in a single
step of execution?” To answer a normal flow query,DDP begins
by posting a one-step flow query for the initial position. For each
new flow position that is part of the one-step flow query’s solution,
DDP posts another one-step flow query. For each flow position in
the solutions to these queries,DDP posts yet another query, and so
on, until none of the flow positions flows to a new location. The
solution to the original flow query is then the one-step closure: the
union offposwith the solutions to all of the one-step flow queries.

If fposis a flow position for a variable, then a one-step flow query
on fpos simply returns all expressions that directly reference the
variable. If fpos is a flow position for a method, then the solution
is similarly simple: the one-step flow is inferred to be allself
expressions withinfpos’s method.

A one-step flow query for an expressionexp is more complicated
to answer. Its solution must account for assignment statements,
returns from methods and blocks, and message-send statements.

If exp is the right-hand side of an assignment statement, then the
one-step flow fromexp is the variable on the left-hand side of the
statement with the same context asfpos.

6

If exp is immediately returned from a method or block, then the
valueexpproduces at run time will flow out of the method or block
and into the message-send expression that invoked it. To find the
one-step flow in this case,DDP posts a senders query on the block
or method. The one-step flow fromfposis precisely the answer to
this query.

If exp is the receiver term of a message-send expression, then the
value produced byexpat run time will become the receiver (self)
of whichever method responds to the message send. To find the
one-step flow in this case,DDP posts as a subgoal a responders
goal onexpin order to find any methods that can respond—blocks
that respond are ignored, because there is no equivalent toself ex-
pressions for accessing the currently executing block. The inferred
one-step flow forfpos includes each method/context pair that this
responders goal returns.

Finally, if expis an argument to a message-send, then the value pro-
duced byexpat run time will become a parameter to the responding
method. In this case,DDP again posts a responders goal forexp
under the context that is part of originalfpos query. This time,
however, it does not ignore blocks that are included in the respon-
der. The one-step flow offpos includes the appropriate parameter
of each block or method that responds.

5 DDP/CT

Our class-tagging extension toDDP, calledDDP/CT, extends the
base analysis in five ways:

1. We extend the type system to allow class types to be subdi-
vided usingsource tags.

2. We add a new kind of goal, theinverse type goal.

3. We add a secondsubgoaling schemaor solution strategy for
answering senders goals that uses inverse type goals.

4. We add a new kind of goal for finding thetype of array ele-
ments.

5. Weaugment flow goalsso that they can trace the flow of just
those objects within a specified type.

Source tags are the core ofDDP/CT’s extensions. They provide
a mechanism for subdividing the set of objects that are instances
of one class, thereby providing a way to segregate data-flow paths
through such objects.

The other four extensions are needed to exploit this new subdivi-
sion. The new strategy for senders goals is needed to trace back-
wards from a class’s initialization methods to callers that feasibly
invoke the methods for a particular partition of the class’s instances;
with the standardDDP strategy, all invokers of the initialization
methods would be considered feasible, leading to the intermixing
that subdividing the types was intended to prevent. The new in-
verse type goals, in turn, are required to support this new strategy
for answering senders goals.

The array-element type goals are added because arrays are widely
used data-polymorphic objects in Smalltalk, not only as data-
structures in their own right, but also as the underlying storage for
many other collection classes, such as hash tables. We hope that
source-tagged types will finally provide a way to analyze these uses
precisely. Type-specific flow goals have been added as a simple
way to improve the precision of flow goals by avoiding flow paths
of objects other than the interesting ones.

5.1 Source-tagged class types

DDP/CT adds asource tagto class types, as described earlier in
section 2. A class type{|C|} in DDP includes all objects that are
instances of classC. In DDP/CT, a class type can also include a
source tagl and be of the form{|C, l |}. The type{|C, l |} includes
precisely those instances ofC that, in the abstract semantics, are
tagged with source tagl .

Tagged types are introduced to a running type inference whenever
there is a type goal for an expression that simply reads the primary
global variable holding a class. (Recall that in Smalltalk, classes are
themselves objects, not simply the compile-time constructs found in
less dynamic languages.) Instead of answering such a goal with a
simple class type{|C|} as the baseDDP would, DDP/CT answers
the goal with some tagged class type{|C, l |}. Source-tagged types
are then automatically propagated through the goal network, allow-
ing other goals to take advantage of the more specific types to gen-
erate more specific inferences.

5.2 Inverse type goals

An inverse type goalrequests a flow position that includes all pro-
gram locations that could produce an object of a specified type. It
is an inverse of a type goal: instead of asking what type is held by a
specified flow position, it asks what flow positions hold a specified
type. Inverse type goals are used to support the improved senders-
of goal described below. Inverse type goals, of all the goals used by
DDP/CT, take particular advantage of source tags.

The specified type must be a source-tagged class type. To solve an
inverse type goal for source-tagged type{|C, l |}, DDP/CT uses one
of two strategies depending on whetherC is a regular class, e.g.
Point, or a metaclass, e.g.Point class, of whichPoint itself is
an instance.

If C is a regular class, then{|C, l |} includes objects that were created
by the instantiation method: that is, the primitive methodbasicNew
in the Squeak dialect of Smalltalk. To solve such a goal,DDP/CT
simply traces the forward flow (by posting flow goals) of the return
value from thebasicNew method3 under an assumed context that
the receiver is of type{|mclass(C), l |}. We use “mclass(C)” to mean
the metaclass of classC. Solving this goal will require finding the
precise senders of thebasicNew message under these assumptions
as described in the next section.

If C is a metaclass, then{|C, l |} includes the classrclass(C) with tag
l , where we userclass(C) to mean the regular class whose meta-
class isC. Aside from direct data flow, such an object can only
enter the computation from two sources: the program executes the
expression with tagl , or the program invokes the reflectiveclass
method on an instance of{|rclass(C), l |}. The class method re-
turns the class of the receiver of the message, and it is frequently
used in idiomatic Smalltalk. For example, it is used (indirectly) by
thecopy method of theCollection class in order to create a new
collection of the same class as the receiver. Therefore, ifC is a
metaclass,DDP/CT traces flow forward from two places: the ex-
pression with tagl , and theclass method under a context where
the receiver type is{|rclass(C), l |}.4

3There are actually a small number of such methods in Squeak,
and the analyzer must trace all of them.

4We freely admit that the complexities of handling Smalltalk’s
more extreme reflective features have caused us frequently to con-

7

Some exceptions should be noted. A fixed set of primitive Smalltalk
classes have special syntax for creating instances of that class; these
classes are not typically instantiated by means of sendingnew-
style creation messages to the class. Examples are blocks, which
have their own syntax, and numbers, which can appear as literals.
DDP/CT reverts to special-case handling to implement inverse type
queries on these classes in a straightforward way.

5.3 Senders goals

Recall fromsubsection 3.1that asenders goalin DDP finds those
expressions in the program that can invoke a specified method in
a specified context. The strategyDDP uses to find those senders
is: first, find all message-send expressions that invoke a method
of the appropriate name, and second, check that the type of the
receiver (which must be inferred using a subgoal) is consistent with
the expression invoking the method.

A potential difficulty of this approach arises if there are a large num-
ber of message-send expressions whose message name matches the
name of the queried method. For example, when trying to find the
senders of theAtomMorph class’sinitialize method, the stan-
dard strategy would consider hundreds of potential message-send
expressions, generate a type query for each one of them, and, most
likely, both generate a large number of subgoals and include a large
number of false positives. Worse, consider querying for the senders
of methodat:put: in classArray, perhaps as part of an effort
to find the type of elements that could be added to a particular set
of interesting arrays. In the standard Squeak code base, there are
over one thousand senders ofat:put: to sort through, and many
of them do, in fact, invokeArray’s at:put: method. Potentially
only a small number of them invokeat:put: on the particular ar-
rayobjectsthat are of true interest, but if the question is formulated
as “who invokesat:put: in Array,” then the answer to the ques-
tion is forced to include a large number of extra senders in order to
be correct.

DDP/CT therefore uses an alternative strategy if the specified con-
text includes a non-trivial receiver type (i.e., not the top typeAny-
thing). If the receiver type of the method is specified, then the
method in that context can only be invoked by a message-send ex-
pression where the receiver is in the specified type. The alternative
senders-goal strategy uses this fact. It has as a subgoal an inverse
type goal for the specified receiver type. The answer to this subgoal
includes all expressions in the program that can hold an object of
the specified type. The alternative strategy then selects as possible
senders those message-send expressions whose receiver is in the in-
verse type goal’s answer and whose message selector matches the
method being queried.

In other words, the alternate strategy swaps the roles of the two se-
lection criteria. Instead of applying a semantic filter to the results
of a base syntactic query, it syntactically filters the results of a se-
mantic query.

sider the benefits of a more strictly phased language design. The
lure of adapting our analyses to work with full-fledged Smalltalk
is the payoff of having 300,000 lines of source code and a large
community of coders to exercise our technologies. The test bed
thus provided will provide the experience that will, we hope, di-
rect a following round of language design. The challenge is to de-
sign annotations that provide leverage for the static analyses that
drive programmer-support tools, without compromising the flexi-
bility and power we expect of dynamic languages.

5.4 Array-element type goals

Smalltalk arrays are treated as regular objects. There is no spe-
cial syntax for accessing them. Instead, an array is an objecta that
handles operation “a at: i” to retrieve the element at indexi, and
“a at: i put: e” for storing elemente into the array at indexi.
Other objects in the system respond to theat: andat:put: mes-
sages, doing non-array operations in response to them, and thus an
expression such as “a := b at: i” might or might not perform
an array operation. In fact, different executions of this same state-
ment might sometimes invoke an array operation and other times
not, depending on the class of object to whichb is bound at each
execution.

The type goals ofDDP find a type for a variable, but Smalltalk ar-
rays do not hold their contents in regular Smalltalk variables. Thus,
the baseDDP algorithm provides no way to even ask for the type
of an array’s elements. This was satisfactory at the timeDDP was
designed, becauseDDP also provided no strategy for finding such
types, either.DDP/CT’s source tags, on the other hand, do pro-
vide the necessary polyvariance for this analysis, and since arrays
are frequently used in Smalltalk programs,DDP/CT also includes
a newarray-element type goal.

An array-element type goal finds the type of elements of any array
in a specified array type. Ideally, the specified array type includes a
source tag. In that case, the arrays whose elements are being studied
are those arrays created with the specified source tag. If the array
type does not have a source tag, then the solution strategy will still
be followed, but most likely it will terminate quickly with a type of
Anything.

To solve an array-element type goal, the algorithm uses a senders
goal to locate all invocations ofat:put: where the receiver might
be a member of the goal’s array type. Then, for each such invoca-
tion found, it posts a type goal for the second argument (i.e., the
put: argument). Finally, it takes the union of the answers from all
of those type goals and reports that union as the type of elements in
the arrays in question.

5.5 Type-specific flow goals

Recall that a flow goal asks where values can flow from a specified
starting location. They are used for a number of purposes, including
the inverse type queries described above and finding the program
locations where a particular block might be invoked. Some of the
enhancements described above rely heavily on flow goals; manual
inspection of early trials ofDDP/CT suggested that the enhance-
ments were not as effective as desired due to over-approximation in
the flow goals on which the solution strategies depended.

The biggest problem appeared to be thatDDP/CT would trace flow
paths that are feasible in principle, but are infeasible for the data
type of interest. For example, a variable that sometimes holds ar-
rays that are being traced by an array-element type goal might at
other times hold the valuenil. Tracing flow through this vari-
able would necessarily trace not only the interesting paths through
which the relevant arrays flow, but also the irrelevant paths thatnil
will follow. If a message is sent to the variable, then completely
different methods might be invoked when the variable holds an ar-
ray versus when the variable holdsnil; tracing flow through these
later methods causes a entire subgraph of completely irrelevant pro-
gram locations to be added to the potential flow from the original
variable.

8

| c a other |
c := ValueHolder new.
a := c.
a contents: ’hello’.
other := ValueHolder new.
other contents: 12345.

other contents.
c contents

Figure 7. An example Smalltalk fragment that exhibits data
polymorphism. In the first line, c, a, and other are declared
as temporary variables. TheValueHolder class is instantiated
twice and the two instances are assigned toc and other; a is
assigned the same value asc. Thus, a and c are aliases for
the same object. A string is installed into thea/c value holder
on the fourth line, while an integer is installed into other’s
value holder on the following line. DDP/CT can distinguish
these two value holders from each other and deduce that the
“ c contents” fetch on the final line will produce a string, as
shown in Figure 8.

Figure 8. DDP/CT successfully infers that value holders as-
signed to c from Figure 7 can only hold strings and the un-
defined objectnil. As an aside, the object can holdnil be-
cause all instance variables come into existence holdingnil.
DDP/CT is not flow sensitive and thus cannot determine that
ValueHolder’s instance variable has been initialized before
contents is ever called.

The solution inDDP/CT is to ask a better question. Instead of
simply asking about flow from a specified point,DDP/CT can ask
about flow of objectsof a particular typestarting at a specified
point. Since, in fact, every use of flow goals inDDP/CT is at-
tempting to find the flow of objects in a known type, every use
of flow goals can take advantage of the new facility to specify the
type of objects being traced. To continue the previous example, if
the analyzer is tracing the flow of arrays, then it can use a flow
goal that only traces arrays. The flow-goal solver, described in
subsection 4.4, is then free to ignore methods to which onlynil
flows.

6 Example Code Fragments

Figure 7shows some example code that is data polymorphic. Class
ValueHolder is a standard Smalltalk class used to hold an arbitrary
value—it is a simple “cell” object. The internal value is set using
thecontents: method, and fetched using thecontents method.
The example code creates two value holders, storing one of them
in c and the other inother. The code copies the reference inc to
a, resulting inc anda being aliases to the same object. The value
holder inc is given, via its aliasa, the string’hello’ to hold, while
the value holder inother is given the integer12345 to hold.

This code, in isolation, usesValueHolder in a data-polymorphic
fashion; there are other methods in the standard Squeak image
which use the class to contain other data types, as well. AsFigure 8

| c a other vhclass1 vhclass2 |
vhclass1 := ValueHolder.
c := vhclass1 new.
a := c.
a contents: ’hello’.
vhclass2 := ValueHolder.
other := vhclass2 new.
other contents: 12345.

other contents.
c contents

Figure 9. A variation of the code in Figure 7. In this code frag-
ment, the classValueHolder is stored into a variable before
being instantiated. DDP/CT successfully distinguishes the two
kinds of value holders—those stored inc and those stored in
other—just as it did in Figure 7.

| c a other vhclass1 |
vhclass1 := ValueHolder.
c := vhclass1 new.
a := c.
a contents: ’hello’.
other := vhclass1 new.
other contents: 12345.

other contents.
c contents

Figure 10. Another variation of the code in Figure 7. This
time there is only one variable,vhclass1, used to hold class
ValueHolder. In this case, DDP/CT fails to distinguish the two
kinds of value holder created in this fragment; it infers the same
types for “c contents” and “ other contents”. However, it
does distinguish these value holders from other value holders
in the program at large, ultimately inferring that both of these
holders can hold only strings, integers, or the undefined object.

shows, however,DDP/CT successfully infers a precise type for the
value held inc. It traces data flow back to the string’hello’, but
ignores the infeasible data-flow path to the integer12345.

The next two figures show variations of the code fromFigure 7in
order to demonstrate an extent and a limitation ofDDP/CT’s effec-
tiveness. InFigure 9, the classValueHolder is stored into vari-
ablesvhclass1 andvhclass2 before being instantiated. This is
an example of Smalltalk’s reflective ability to manipulate classes
as first-class objects themselves. This example demonstrates more
clearly why “ValueHolder new” in Smalltalk is not merely a dif-
ferent way to write “new ValueHolder()” in Java. In this exam-
ple,DDP/CT is still able to keep the two value holders distinct and
infer thatc holds only strings.

Figure 10extends this example further and uses just one variable,
vhclass, to hold the class. Bothc andother are instantiated by
sendingnew to vhclass. DDP/CT is unable to distinguish the
two value holders in this case because it tags both of them with the
singular reference to the originating occurrence ofValueHolder
on line 2. Even in this case, however,DDP/CT is able to distinguish
the two kinds of value holders in this code fragment from value
holders created in other parts of the standard Squeak code base we
use for our tests. Thus,DDP/CT infers thatc holds either a string or
an integer, even though there are other value holders in the program
that hold other types.

9

objects of type
{| VH class,1 |} are where?

(no context)

VH , ...

flow from (self basicNew)
in method new of B

receiver is type {| VH,1 |}

a, c, ...

type of ’hello’

(no context)

String

type of VH

(no context)

{| VH class,1 |}

type of (VH new)

(no context)

{| VH,1 |}

type of c

(no context)

UO, {| VH,1 |}

responders to (c contents)

(no context)

(VH>>contents, {| VH,1 |})

type of VH.contents

receiver is type {| VH,1 |}

{Srting, UO}

type of (c contents)

(no context)

{String, UO}

type of newContents

receiver is type {| VH,1 |}

String

objects of type {| VH,1 |}
are found where?

(no context)

a, c, ...

senders of basicNew

receiver type {| VH class,1 |}

(self basicNew) in B>>new

senders of contents:
in class VH

receiver is type {| VH,1 |}

(a contents: ’hello’)

. . .

. . .

. . .

UO = UndefinedObject

B = Behavior

VH = ValueHolder

Abbreviations

1

1

1

G1

G10

G9
G5

G8

G11

G12

G13

G7

G4

G6

G3G2

Figure 11. The graph of goals generated by DDP/CT when it infers a type forc contents, an expression in the method inFigure 12.

10

| c a other |
c := ValueHolder1 new.
a := c.
a contents: ’hello’.
other := ValueHolder2 new.
other contents: 12345.

other contents.
c contents

Figure 12. The code from Figure 7 with source tags added to
the two mentions ofValueHolder.

7 Example Goal Graph

Let us now step through an example goal graph and see how source-
tagged class types are threaded throughDDP/CT. Figure 12shows
the code fromFigure 7with a couple of expressions labeled: each
mention ofValueHolder is now tagged with its own subscript.
These labels will be used in this example as source tags.

Figure 11shows the goal graph thatDDP/CT generates when it is
asked to find a type for “c contents”. Each box in the figure rep-
resents a goal. The top part of the box shows the query, e.g. “type
of c contents” for G1. The middle part shows any context that
should be assumed while answering the query. For G1 the assumed
context is “(no context),” i.e. no assumption at all. The bottom part
of each box in the figure shows the answerDDP/CT has found for
the goal, e.g.{UndefinedObject, String} for G1.

Arrows in the figure show goal dependencies. For example, G7
depends on G9 and G8 in order to be justified. In a few places parts
of the goal graph are elided from the figure. For example, G13 has
a number of dependencies that are not shown, and the answer found
to goal G10 has been abbreviated.

Let us now consider each goal in turn. Goal G1 is the initial
goal, which asks for a type forc contents. This expression is
a message-send expression, soDDP/CT relies on a subgoal that
searches for the responders to the message send (G2), and subgoals
for the value returned from each responding method (G6). Notice
that the responder found by G3 includes a source-tagged class type,
and that tagged type is passed on to the question of G6. Much of
the challenge of designingDDP/CT consists of finding sound tech-
niques for source tags to be passed on in this way through long
chains of subgoals.

Goal G2 seeks the responders forc contents under no assumed
context. To find the responders, a goal is posted to find the type of
c, the receiver of the message send. The type found by that goal is
{|ValueHolder,1|}, i.e., an instance ofValueHolder that is asso-
ciated with source tag “1.” Given this type for the receiver, there
is only one possible responder to the message send: thecontents
method of classValueHolder, under a context where the receiver
is of type{|ValueHolder,1|}. Notice, again, that the source tag is
propagated from a goal’s subgoals to somewhere in the goal’s an-
swer; in this case, the tag is propagated from the type found forc
to the responding context in G3’s answer.

Goal G3 requests the type of the variablec. DDP/CT finds the type
of a variable by finding the types of all expressions assigned to the
variable. In this case, there is only one assignment, the expression
ValueHolder1 new, and so the type found forc is copied directly
from the type found forValueHolder1 new.

| arr arr2 arr3 |
arr := Array new: 10.
arr at: 5 put: ’hello’.

arr2 := arr.
arr3 := arr2.

arr3 at: 5

Figure 13. Retrieving elements from an array. Data-
polymorphic analysis is required in order for the analyzer to
connect objects removed from an array usingat: messages to
objects placed into that array usingat:put: messages.

The type forValueHolder1 new requires a chain of inferences that
is not shown. A particularly interesting inference in the chain, how-
ever, is goal G5 which finds a type forValueHolder1. Instead of
being inferred as type{|ValueHolder class|} as it would be in
DDP, it is given a type of{|ValueHolder class,1|}. Thus, we
finally see where source tags are initially injected into the analysis
instead of propagated from one goal to another.

Goal G6 finds a type for thecontents instance variable of class
ValueHolder. The only assignment statement for that variable
is the one in methodcontents:, which assigns the method pa-
rameternewContents into contents. Goal G7 finds a type for
newContents, which in turn requires finding the senders of the
contents: method. There is only one sender, and its first param-
eter is the literal string’hello’. Goal G8 finds the type of this
literal, i.e.{|String|}.

Source tags pay off in goal G9. G9 finds the senders of
contents: under the assumption that the receiver is of type
{|ValueHolder,1|}. The example code base only contains one such
sender; all other statements that invoke thiscontents: method in-
voke it on receivers with different source tags. Without source tags,
the answer to G9 would include a much larger number of senders.

Goal G10 finds all expressions that hold an object of type
{|ValueHolder,1|}. It is a subgoal of G9 and is used to find
those senders ofcontents: where the receiver has source tag 1.
DDP/CT creates goal G12 to find senders ofbasicNew where
the receiver is of type{|ValueHolder class,1|}. That is, to per-
form an inverse type query on a regular class,DDP/CT performs a
senders query onbasicNew for the associated metaclass.

Goal G12 is a senders query where the assumed receiver type
{|ValueHolder class,1|}. To answer G12,DDP/CT creates
goal G13 to find all expressions that hold an object of type
{|ValueHolder class,1|}.

Goal G13 is an inverse type query that finds all program lo-
cations holding a value of type{|ValueHolder class,1|}, a
type for a metaclass. DDP/CT immediately includes expres-
sionValueHolder1 because it evaluates toValueHolder class
with a source tag of 1.DDP/CT immediatelyexcludesall other
ValueHolder expressions, e.g.ValueHolder2, because they have
a different source tag.DDP/CT additionally considers alternatives
ways class object can enter the computation in Smalltalk, but in this
case there are none and the subgoals are elided from the figure.

11

Figure 14. The analyzer succeeds on the example inFigure 13.

| p1 p2 |
p1 := Array new: 3.
p1 at: 1 put: 2.
p1 at: 2 put: 3.
p1 at: 3 put: 0.

p2 := Array new: 3.
p2 at: 1 put: 3.
p2 at: 2 put: 4.
p2 at: 3 put: 1.

^p1 dotProduct: p2

Figure 15. Data-polymorphism occurs in numeric array com-
putations.

Figure 16. The analyzer succeeds on the example inFigure 15.

8 Collection types

Data-polymorphic analysis is especially useful when it is applied
to resolving separate uses of collection types. A simple example
is shown inFigure 13. The code creates an array, adds the string
’hello’ to it, and then retrieves that same string. The analyzer
succeeds in this case, as shown inFigure 14. The analyzer uses
source tags to connect theat: message-send on the last line of
the example to theat:put: message-send on the third line of the
example, while ignoring the other 1706 senders ofat:put: in the
same code base.

A more useful and sophisticated example is shown inFigure 15. In
this example, we create two numeric vectors, then compute their dot
product. ThedotProduct: method, not shown, includes a num-
ber of senders toat:. DDP/CT can connect those senders to the
senders ofat:put: in Figure 15using class tags, and determine
that all of the arithmetic operations thedotProduct: method uses
will be applied to integers. The result produced byDDP/CT is
shown inFigure 16.

9 Multi-level source tags

Factory design patterns [6] present an extra challenge to data-
polymorphic analysis. A typical factory method is shown in
Figure 17. This method provides a useful level of indirection—
subclasses might override this method, and different platforms
might replace the method outright. Unfortunately, the very indi-

Platform>>makeHolder
^ValueHolder new

Figure 17. A typical factory method, makeHolder, for class
Platform. This kind of indirection is useful in many cir-
cumstances, including the possibility that different platforms
will implement the method to use a different value-holder
class. Unfortunately, all callers of this method will receive a
ValueHolder with the same source tag: the single mention of
ValueHolder in the makeHolder method.

| vh1 vh2 |
vh1 := Platform makeHolder.
vh1 contents: ’hello’.

vh2 := Platform makeHolder.
vh2 contents: 123.

vh1 contents.

Figure 18. An example usage of the factory method from
Figure 17. In this example, the inferencer as described so far
fails to distinguish separate container objects, because both
holders are given the same source tag.

Figure 19. The analyzer merges flow through the two differ-
ent holders in Figure 18, and so reports thatvh1 can hold both
integers and strings.

rection that motivates the design pattern overloads the necessarily-
finite abstraction of class tags: all value holders created by the
makeHolder method are given the same source tag. Thus, the cen-
tral approach of this paper, as described so far, is insufficient to
distinguish separate uses of objects created by factories.

A sample use of this factory method is shown inFigure 18. Since
the same source tag is used for the value holders held by bothvh1
andvh2, data flow through the distinct holders is intermingled as
shown inFigure 19.

This example points to a solution, however. Notice that, while
the vh1 and vh2 value holders are both associated with the sin-
gle mention of theValueHolder class in thePlatform factory
method, they access that method through separate mentions of class
Platform. If there were a way to tag theValueHolder refer-
ences with the mention ofPlatform instead of the mention of
ValueHolder, then the two variables’ value holders could be dis-
criminated by the analysis.

This can be accomplished by generalizing source tags into flow po-
sitions. A flow position can include both a pointer to an expression
in the program plus a context under which the expression was eval-
uated. The context can include a type for the surrounding method’s
parameters and for the current receiver object. The type of the re-
ceiver object, in turn, can be another source-tagged class type, com-
pleting a recursion. Thus, generalizing source tags into flow posi-
tions allows the system to apply multiple tags to the same object.

12

Figure 20. Using multi-level source tags on the example from
Figure 18, it is possible to distinguish objects that are created
via a factory object.

A maximum number of tags—i.e., traversals through the recursive
cycle of tags to contexts to types to tags—must be chosen to keep
the data-flow lattices finite. Choosing a maximum tagging level of
1 yields an analyzer equivalent to one using simple source-tagged
class types. A level of 0 gives a system that does not use source
tags at all. A level of 2 is sufficient for the example ofFigure 18,
resulting in a precise type inference, as shown inFigure 20.

10 Related work

A large number of alias-analysis algorithms partition allocated ob-
jects using “allocation sites” [9]. An allocation site is typically an
invocation ofnew or malloc(). For example, theDCPA algorithm
by Wang and Smith partitions objects by whichnew statement al-
locates them [23]. DCPA has also been adapted to the Resilient
Smalltalk environment5 by von der Ah́e [22]. The inferencer of
von der Ah́e is also able to separate analysis of an object’s lifetime
to times before and after the object’s initialization code finishes; in
many cases, this separate analysis avoids the imprecision caused by
variables being auto-initialized tonil.

As discussed earlier, partitioning bynew statements alone is un-
helpful by itself for Smalltalk code. DCPA additionally dis-
criminates allocation sites using context, or contours, and its
context-discrimination mechanism depends on distinguishing be-
tween “CPA safe” and “CPA unsafe” methods. This additional
discrimination is used by von der Ahé to obtain effective data-
polyvariant analysis in Smalltalk. The distinction is computed by
marking some methods as unsafe, in particular those that create new
objects, and tracing backwards through the call graph: any method
that invokes an unsafe method is also unsafe. The remaining meth-
ods are marked as safe. While this computation is effective in an
abstract-interpretation framework, where the full program is ana-
lyzed, it appears impractical inDDP’s demand-driven framework.
Only a small fraction of the program is analyzed in each execution
of aDDP-based algorithm, and determining the safe vs. unsafe des-
ignation would require analyzing a substantial extra portion of the
program.

A type-inference algorithm crafted by Oxhøj, Palsberg, and
Schwartzbach also partitions objects by allocation site [13].
DDP/CT contributes a novel analog to allocation sites, source tag-
ging of class types, which is effective in highly dynamic languages
with only one allocation site.

Plevyak and Chien describe an adaptive algorithm that often avoids
using type tags when they would not be able to refine the analysis
[14]. This approach speeds up the algorithm with no loss in preci-
sion.DDP/CT is less sophisticated and uses source-tags generously
even when they are not needed. This profligacy of potentially su-

5http://www.oovm.com

perfluous precision is mitigated, however, byDDP/CT’s ability to
focus effort on a relatively small portion of the program.DDP/CT
may not happen to analyze a large number of uses of the same class
at all in the sparse elements of the program it traverses for a given
request, independent of whether or not their analysis could have
been merged without loss of precision.

11 Future work

As we’ve seen in our examples, the single-level source-tagging ab-
straction does not distinguish distinct instances of higher-level col-
lections, such as theOrderedCollection andSet classes, that
are built on top of underlying arrays. The multi-level source tags
described insection 9provide enough information to the analyzer
to distinguish these uses. We are in the midst of a detailed study
of DDP/CT effectiveness on code samples drawn from real-world
code bases such as the Squeak run-time system. Our tests are in-
tended to evaluate the practical efficacy of source-tagged class types
by comparing the performance of the algorithm—both for speed
and precision—using a variety of levels of source tagging, includ-
ing zero levels (i.e., no source tags).

Measuring speed and precision across variations in the abstraction
is particularly interesting in the case ofDDP/CT. It is typically the
case in program analysis that increasing the precision of an abstrac-
tion causes the algorithm to run slower. However, we have found
in our initial trials that the increased precision of source tags has
a strong focussing effect on the (dynamically determined) control-
flow links along whichDDP’s goal-directed, demand-driven search
proceeds. That is, source tags allows the analysis to eliminate large
portions of the code base from consideration that would otherwise
be conservatively dragged into the analysis. It appears that instead
of a precision/speed tradeoff, increasing the precisionalsoimproves
the scalability and speed of the analysis. The tests we are currently
conducting will allow us to evaluate this possibility in a quantitative
manner.

12 Conclusion

Data polymorphism is a long-standing issue with data-flow analysis
in higher-order, dynamic programming languages. The problem is
made even more difficult in languages that reflectively allow classes
to be reified as first-class objects.DDP/CT is a solution to this clas-
sic problem, extending the basicDDP analysis with a simple form
of polyvariance that is able to resolve source-distinct instances of
data-polymorphic classes. Despite this extra precision, it retains
the scalability of the originalDDP analysis. Our implementation
demonstrates that the analysis can handle the full complexities of a
real-world language, even one with the extremely dynamic, reflec-
tive features of Smalltalk.

13 References

[1] N. I. Adams, IV, D. H. Bartley, G. Brooks, R. K. Dyb-
vig, D. P. Friedman, R. Halstead, C. Hanson, C. T. Haynes,
E. Kohlbecker, D. Oxley, K. M. Pitman, G. J. Rozas, Jr.
G. L. Steele, G. J. Sussman, M. Wand, and H. Abelson.
Revised5 report on the algorithmic language Scheme.SIG-
PLAN Notices, 1998.

[2] Ole Agesen. The cartesian product algorithm: Simple
and precise type inference of parametric polymorphism.
In European Conference on Object-Oriented Programming
(ECOOP), 1995.

13

[3] Ole Agesen. Concrete Type Inference: Delivering Object-
Oriented Applications. PhD thesis, Stanford University, 1995.

[4] American National Standards Institute.ANSI NCITS 319-
1998: Information Technology — Programming Languages
— Smalltalk. American National Standards Institute, 1430
Broadway, New York, NY 10018, USA, 1998.

[5] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren.
Context-sensitive interprocedural points-to analysis in the
presence of function pointers. InSIGPLAN Conference on
Programming Language Design and Implementation, pages
242–256, 1994.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
side.Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading, Massachusetts, 1995.

[7] James Gosling, Bill Joy, and Guy Steele.The Java Language
Specification. Addison Wesley, Boston, MA, 1996.

[8] David Grove, Greg Defouw, Jeffrey Dean, and Craig Cham-
bers. Call-graph construction in object-oriented languages. In
ACM Conference on Object-Oriented Programming, Systems,
Language, and Applications (OOPSLA), 1997.

[9] Michael Hind. Pointer analysis: Haven’t we solved this prob-
lem yet? InACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering (PASTE), Snow-
bird, Utah, 2001.

[10] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and
Alan Kay. Back to the future: The story of Squeak, A practical
Smalltalk written in itself. InACM Conference on Object-
Oriented Programming, Systems, Language, and Applications
(OOPSLA), 1997.

[11] Alan C. Kay. The early history of Smalltalk. InThe second
ACM SIGPLAN Conference on the History of Programming
Languages, pages 69–95. ACM Press, 1993.

[12] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin.
Principles of Program Analysis. Springer-Verlag, Berlin,
1999.

[13] Nicholas Oxhøj, Jens Palsberg, and Michael I. Schwartzbach.
Making type inference practical. InEuropean Conference
on Object-Oriented Programming (ECOOP), pages 329–349,
1992.

[14] John Plevyak and Andrew A. Chien. Precise concrete type
inference for object-oriented languages. InACM Conference
on Object-Oriented Programming, Systems, Language, and
Applications (OOPSLA), pages 324–340, 1994.

[15] Micha Sharir and Amir Pnueli. Two approaches to interproce-
dural data-flow analysis. In Steven S. Muchnick and Neil D.
Jones, editors,Program Flow Analysis: Theory and Applica-
tion. Prentice Hall Professional Technical Reference, 1981.

[16] Olin Shivers. Control-flow analysis in Scheme. InACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI), 1988.

[17] Olin Shivers. Control-Flow Analysis of Higher-Order Lan-
guages. PhD thesis, Carnegie Mellon University, 1991.

[18] Olin Shivers. The semantics of Scheme control-flow analysis.
In Partial Evaluation and Semantic-Based Program Manipu-
lation, pages 190–198, 1991.

[19] S. Alexander Spoon and Olin Shivers. Demand-driven type
inference with subgoal pruning: Trading precision for scala-

bility. In European Conference on Object-Oriented Program-
ming (ECOOP), 2004.

[20] S. Alexander Spoon and Olin Shivers. Semantic navigation
of large code bases in higher-order, dynamically typed lan-
guages. InProceedings of the 12th Working Conference on
Reverse Engineering (WCRE 2005), Pittsburgh, Pennsylva-
nia, November 2005.

[21] Frank Tip, Chris Laffra, Peter F. Sweeney, and David Streeter.
Practical experience with an application extractor for Java. In
ACM Conference on Object-Oriented Programming, Systems,
Language, and Applications (OOPSLA), pages 292–305, New
York, NY, USA, 1999. ACM Press.

[22] Peter von der Ah́e. Applications of concrete-type inference.
Master’s thesis, University of Aarhus, 2004.

[23] Tiejun Wang and Scott F. Smith. Precise constraint-based
type inference for Java.Lecture Notes in Computer Science,
2072:99–117, 2001.

14

