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SUMMARY

Highly dynamic languages like Smalltalk do not have much static type information imme-

diately available before the program runs. Static types can still be inferred by analysis tools, but

historically, such analysis is only effective on smaller programs of at most a few tens of thousands

of lines of code.

This dissertation presents a new type inference algorithm,DDP, that is effective on larger pro-

grams with hundreds of thousands of lines of code. The approach of the algorithm borrows from the

field of knowledge-based systems: it is a demand-driven algorithm that sometimes prunes subgoals.

The algorithm is formally described, proven correct, and implemented. Experimental results show

that the inferred types are usefully precise. A complete program understanding application, Chuck,

has been developed that usesDDP type inferences.

This work contributes theDDP algorithm itself, the most thorough semantics of Smalltalk to

date, a new general approach for analysis algorithms, and experimental analysis ofDDP including

determination of useful parameter settings. It also contributes an implementation ofDDP, a general

analysis framework for Smalltalk, and a complete end-user application that usesDDP.

xvii



CHAPTER I

INTRODUCTION

1.1 Overview

Dynamic programming languages give a tight interface between programs and the humans. They

do so in part by removing the need to restart a program whenever the human requests changes to be

made. The result is an interface like Smalltalk [8, 42] or the Lisp Machine [45], interfaces where

the human is more like a sculptor molding clay than an operator submitting punched cards. Such

interfaces share a similarity with mature operating systems: users may make many changes without

rebooting the entire computer. Users of a dynamic language, similarly, can make many changes

without rebooting the entire running program.

These dynamic interfaces must tolerate programs that are less than pristine. In particular, the

languages must have very flexible type systems in order to avoid chicken-and-egg problems when-

ever a programmer tries both to change the type of some variable and to update the locations the

variable is used. This type-checking challenge is so great that most dynamic languages include no

type checker at all. As a result, programmers in dynamic languages can make changes more readily,

but they have less automatic information about the programs they have created.

Type checkers, however, give useful type information. Such types can be used for program

understanding [24], for dead code removal [2], and for improved compilation [32, 59]. By giving

up a type checker, dynamic programming environments seem to sacrifice these good static tools.

There is another source of type information, however: program analysis. Specifically, type

inference. Type-inference algorithms can analyze a program and produce correct statements about

the types that portions of a program will have when the program executes, even in environments

that do not insist on all programs type checking.

The type-inference problem is challenging. Such algorithms must successfully process arbitrary

programs, in the full generality that programmers are allowed to use in a dynamic language, in

contrast to a type checker that is allowed to reject sufficiently difficult programs. Such an algorithm

1



must, for most languages, contend with data flow and control flow depending on each other. Such

algorithms can infer better types when they repeatedly analyze the same expressions under multiple

assumed execution contexts, yet history shows that they must be careful not to analyze under too

many contexts or they will require too much memory (and thus time) to be practical.

This work describes a new type inference algorithm and shows that it is effective. Specifically:

Demand-driven algorithms that prune subgoals can infer types that are correct, that are

usefully precise, and that differ depending on calling context, in Smalltalk programs

with hundreds of thousands of lines of code.

1.2 Problem Details

The problem addressed in the present work is to infer types in large Smalltalk programs without

giving up on context sensitivity. This section describes several aspects of this chosen problem.

1.2.1 Large Programs

Type inference is an old problem, and there are now effective algorithms for programs of up to

tens of thousands of lines of code, even with all of the other problem constraints described below.

Therefore, the present work focuses on larger programs of at least one hundred thousand lines of

code. When we write of “large programs,” we mean programs with at least one hundred thousand

lines.

1.2.2 Sound Upper Bounds

The correctness requirement of the present work, defined in detail inChapter 5, is that inferred

types must be sound upper bounds. Consider a type judgement such as, “foo holds anInteger or

aFloat.” The correctness requirement is that every value held by the variablefoo as the program

runs is either anInteger or aFloat. It is acceptable to have extra options, for example iffoo

actually only holdsInteger’s and neverFloat’s. It is not acceptable forfoo to holdFraction’s.

Potential uses do not need to be reported. For example, the above judgement is correct even if

the code will function correctly whenfoo is bound to aFraction. As a result, a library is allowed

to have different types inferred when it is used by different programs. In short, the present work

finds actual uses instead of potential uses.
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1.2.3 All Programs Accepted

The goal of the present work is to accept all programs. It is a pureprogram analysis, producing in-

formation about an existing program, as opposed to aprogram verification, which attempts to verify

that the program matches some specification—in this case, the specification that no type error oc-

curs when the program runs [57]. Program verification cannot succeed on an arbitrary program. For

typical problems, verification cannot even succeed on all programs that match the specification—

otherwise, the algorithm would provide a solution to the Halting Problem. Verifiers, therefore, must

always reject some programs and must typically reject even some satisfactory programs. The as-

sumption in the present work is that too much code already exists to allow this kind of rejection.

The present work applies to arbitrarily objectionable programs.

The correctness requirement described above, “sound upper bounds,” follows from this choice.

Many other researchers study a stronger correctness requirement, that no type errors occur at run

time, but such researchers must allow some programs to be rejected. This stronger property has

two parts,progressandpreservation[52], of which the present work only guarantees preservation.

A type system guarantees progress if, whenever the types are correct, the program will continue

executing. A type system guarantees preservation, if whenever the program continues executing,

the types remain correct. In the present work, type information is correct so long as the program

continues executing, but the program might nonetheless stop executing at any time.

1.2.4 Concrete Types

Types, in the present work, are an abstraction over the concrete behavior of a program, and abstrac-

tion has an inherent tradeoff between brevity and detail. Extremely abstract types concisely describe

program behavior program, but they lose detail. Extremely concrete types provide great detail about

the program, but they lose brevity.

The present work studies relatively concrete types, such as “an Integer or a Float”, instead of

relatively abstract types, such as “a function from (α, β) tuples toα’s”. The precise type system is

described inChapter 5. In general, the strategy is that followed by Agesen [2]. Concrete types are

useful for finding control flow information, which in turn is useful for many other program analyses.

Overall, concrete type inference is a stepping stone to other analyses.
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1.2.5 Higher-order Languages

Higher-order languages are desirable, but they make analysis more difficult. In particular, higher-

order languages have subroutine calls that semantically are bound at run time. Object-oriented

languages dynamically bind message sends to methods, while functional languages dynamically

bind function calls to functions. Classic data-flow algorithms for first-order languages [5] cannot

be used as they are on higher-order languages, because such algorithms presume that a control-flow

graph is easily computable before starting the analysis proper.

A conservative control-flow graph may still be computed through program analysis. This com-

putation, however, requires type information in order to be precise. The two problems are thus

intertwined: finding type information requires finding control-flow information, and vice versa.

1.2.6 Smalltalk

It is expected that the present work is applicable to a variety of programming languages. In order to

make progress, however, a specific dynamic programming environment has been studied initially.

Smalltalk has been chosen due to several advantages: it is used for larger programs; it is a small

language and thus convenient work with; and it includes the higher-order constructs of message

sending and higher order functions. Additionally, typical Smalltalk code makes exceptionally heavy

use of run-time binding. Even the conditional and looping constructs are implemented with higher

order functions instead of being in the syntax. Smalltalk programs thus stress a program analysis to

an exceptional degree. An algorithm effective in such an extremely dynamic language is likely also

to be effective in other, less dynamic languages.

Study of type inference in other dynamic languages is left for future work as described inChap-

ter 13.

1.2.7 Context-Sensitive Analysis

The present work limits attention to context-sensitive type inferencers with directional data flow

(and thus that are not based on unification—these terms are described inChapter 2). Such algorithms

are widely agreed to produce more precise information about a program compared to other type

inferencers, but they are also widely rejected for use in large programs due to expected scalability
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difficulties. It is not necessary to not reject such algorithms, however, and indeed the present work

demonstrates a context-sensitive inferencer that scales.

Our projectdeeplystudies one context-sensitive inferencer instead ofbroadlystudying a vari-

ety of inferencers including context-insensitive ones. Adjusting the existing alternative inference

algorithms for Smalltalk requires substantial effort—it is more difficult than simply adjusting for a

different syntax. As one example, the expressions “Morph new”, “HtmlDocument new”, and “Or-

deredCollection new” would, without care, all be merged by the analyzer and given the same (large)

type. Smalltalk is simply a very dynamic language;new is a method in the library instead of syntax.

Given the success of unification-based algorithms in Cecil [20], it is likely that such algorithms can

be adjusted to work in Smalltalk. Since it is not expected that they generate information as precise

as context-sensitive algorithms generate, this approach is not pursued in the present project and thus

it is left as an open research area.

The choice of studying context-sensitive analysis with directional data flow has two major ben-

efits. First, such analyzers have performance characteristics appropriate to the application area of

interactive programming tools. While it is likely that unification-based algorithms can be effec-

tive in Smalltalk, it is less clear that they can produce results at the interactive speeds described in

Chapter 11and particularlysection 11.7.

The second benefit is that the work achieves a wider impact. The analysis approach described in

this document should also be effective in less dynamic languages such as Java, and thus the present

work revitalizes context-sensitive analysis in general.

1.3 How to Read This Document

This document begins by reviewing the history of type inference in dynamic languages, and it

develops from that history a new type-inference algorithm calledDDP. After the general description

of DDP, the document formalizesDDP and the language it analyzes, filling in the remaining details

of the algorithm along the way. The formal work culminates in a proof of correctness inChapter 8.

The chapters after the proof of correctness each stand alone. There is a chapter on implemen-

tation techniques for those wanting to useDDP in practice. There is a description of Chuck, a

program-understanding tool based onDDP. There is a description of an experiment that measures
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DDP in practice. There are a few recommendations for dynamic languages of the future to better

support type inference. Finally, there is discussion of future work in this line of research, including

a description of a beginning on this work, and some concluding remarks as this project draws to a

close.

Different readers will want to focus on different parts of this document. Some suggestions are

given below. If you encounter unfamiliar terms or function names due to skipping chapters, try the

index; all functions and defined terms have an index entry.

If you want to implement a type-inference tool, then you are probably most interested in the

workings ofDDP and its performance envelope. You should focus most closely onChapter 3, on

the non-formal parts ofChapter 5throughChapter 7, and onChapter 9. You may also be interested

in Chapter 2, to see a summary of the general field of type inference, as well asChapter 11, to gain

some intuition about how to tune the main parameter ofDDP. Chapter 14has information about a

promising direction of development for type inference. If you are not familiar with Smalltalk, you

should also skimChapter 4in order to learn the language syntax that is being used throughout this

document.

If you are a program analysis researcher, then you are probably most interested in the differ-

ences betweenDDP and other program analyses. You should focus onChapter 2, Chapter 3, and

Chapter 14. Additionally, you may be interested inChapter 5, which builds on existing work to give

a refined description of context-sensitive data-flow information.

If you are a language designer, then you are most interested in how type inference in dynamic

languages is progressing and on how language design makes analysis more or less effective. You

should focus onChapter 1andChapter 11, as well as skimmingChapter 2, to gain a view of the

status of type inference as of the time of this work. Additionally, you should readChapter 12to see

recommendations stemming from this work for the development of future dynamic languages.
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CHAPTER II

RELATED WORK

Type inference in dynamic higher-order languages has been studied for decades. This chapter de-

scribes this related work from several different perspectives.

2.1 Related Problems

Several analysis problems are closely related to type inference. Type-inference enthusiasts should

be aware, while reading the literature, that algorithms for a related problem often include many

ideas relevant to type inference. In fact, many algorithms which directly solve the related problem

also solve a bona-fide type-inference problem along the way. This section describes several related

problems that have been studied and should be considered even by those ultimately interested in

type inference.

The problem examined in the present work istype inference[2, 12, 27, 70, 20, 64]. This problem

also goes by the namestype determination[64], concrete type inference[2], andclass analysis[20].

The problem, from this perspective, is to analyze a program and predict what type of values the

variables or expressions of the program will hold when it runs. Theinference, determination, or

analysispart means that the program is assumed to have no type annotations on the variables,

implying that the analyzer needs to infer types where none are explicit. Theconcreteor classpart

means that the kind of types being inferred are sets of runtime values. That is, they are types such

as “Integer, Float, or Fraction,” as opposed to abstract types such as, “an expression that has no side

effects”. There is no exact boundary between abstract types and concrete types, but most would

consider both sets of classes and the types inferred in the present research as relatively concrete.

A related problem isdata-flow analysisin general [11, 22, 57]. To infer types, the algorithms

typically find paths through which values flow from one part of the program to another. For example,

if they see a statementx := y in the program, they note that there is a path fromy to x. Any

types that arrive iny can flow on tox as the program executes. Conservatively approximating the
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resulting flow is the problem of data-flow analysis. Inferring types usually involves an algorithm

that is sufficient to perform data-flow analysis in general, and vice versa.

Finally, control-flow analysis[59] is a related problem.Call-graph constructionandcall-graph

extractionare examples of control-flow analysis in object-oriented languages. In general, control-

flow analysis predicts the order in which parts of a program will execute. In higher-order languages,

where there are late-binding constructs such as message sending and first class functions, finding

precise control flow requires predicting types as well. To find the control flow for a message send,

one must predict the classes to which the receiver might belong; to find the control flow for a

function invocation, one must predict which functions might flow to the function expression at the

call site. In both cases, finding precise control flow requires also finding concrete types along the

way. Similarly, finding precise types in a higher-order language requires predicting how the late-

binding operations will be bound, thus showing that type inference is the same problem as precise

control flow. Do note that less precise control-flow algorithms do not need to find types: they make

conservative estimates of the late-binding operations and thus do not need to find type information.

The fastest algorithms described in the survey by DeFouw, et al., make just such a trade off [20].

2.2 Applications

Type inference is usually studied in order to enable some specific application. All existing type-

inference techniques are useful for all of these applications, though different applications will prefer

the use of different techniques. Some applications prefer a fast type-inference algorithm that finds

types quickly enough that they can be used in interactive tools, while other applications only require

that the inferencer be fast enough to find the types overnight. Some applications need precise types

to be useful at all, while others can fruitfully use types that are not very precise. Some applications

prefer a type inferencer that can be focused to find types for one specific portion of a program, while

for others the inferencer may as well analyze the entire program.

My motivating application isprogram understanding[24]. Inferred types can help a program-

mer who is trying to understand the internal workings of a particular program. The inferred types

are directly useful themselves, and they also help program-understanding tools such as diagram

generators and static debuggers. Program understanding applications prefer those type-inference
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algorithms that run relatively quickly, as well as those that can be focussed on the portion of a large

program that the programmer is currently studying.

Another common application isprogram transformation, including transformations to make a

program run more quickly (compiler optimization) [10], and transformations to remove portions

of a program that are not needed (dead-code removal) [3, 66]. Transformation for speed typically

prefers a type inferencer which can be targeted to a module or less at a time in order to support

separate compilation. Removing unused code requires an inferencer that can efficiently analyze an

entire program. Neither kind of transformer has special speed requirements; it is a useful tool even

if it must run overnight instead of running interactively.

Third, there are interactive programming tools that are more effective if they have better type

information. A refactoring browser [56] can make more fine-grained refactorings if it has better

type information. For example, if a user requests that a particular method be renamed, a refac-

toring browser must additionally rename some other same-named methods in parallel; type infor-

mation can reduce the number of such additional methods that need to be renamed. The basic

name-completion commands of an interactive text editor need a shorter prefix from the user if type

information is available to lower the number of names that are relevant in a particular context. Such

tools prefer a type-inference algorithm that runs at interactive speeds and that can be targeted at

specific parts of the program.

A final application iserror detection[62]. Type inference can be used to find potential locations

in the program where, for example, a message-send expression might fail to bind to a method (i.e., a

Smalltalk “does not understand” error). Error detection requires a highly precise type inferencer, but

it does not require that the inferencer be targeted at a portion of a program nor that it run especially

quickly.

2.3 Aspects of Existing Algorithms

This section discusses several aspects of existing type-inference algorithms. For each aspect, the

section describes the history of proposals for that aspect and then gives, from the point of view of

the present work, the state of the art on that aspect.

This approach seems more helpful to the reader than a description of individual projects in
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detail. Future algorithms will be built by considering those aspects, not by mimicking individual

projects, and thus an understanding of the individual aspects is important. Nevertheless, extensive

reference is made to individual projects. Readers can, whenever they are interested, assemble these

references into a complete picture of each project from the point of view of the present project.

2.3.1 Algorithm Frameworks

There are three common algorithm frameworks used for type inference: abstract interpretation,

constraints, and demand-driven analysis. This section describes gives an overview of those three

approaches.

2.3.1.1 Abstract Interpretation

Theabstract interpretationframework treats analysis as an abstraction of execution [19, 40]. That

is, whereas the normal interpreter for a programming language computes with real program values

and real variable bindings, an abstract interpreter computes with abstract values—such astypes—

and abstract variable bindings.

Formally, a regular interpreter might be described with equations likeE(e) = v, meaning that

evaluating (E) the expressioneyields the valuev. An abstract interpreter is described with equations

more likeÊ(e) = t, meaning that abstract interpretation (Ê) of the expressione yields something of

type t. Such an analysis is correct if, for everye, E(e) is indeed a value of typêE(e). In a word, the

abstraction should beconsistentwith the concrete semantics.

In order to support more analysis problems, often anon-standard semanticsis used instead of

the usual language semantics. For example, if one wishes to find feasible call-graph edges, then

one might begin by defining a non-standard semanticsE′ such thatE′(e) = (v, c) determines not

only the valuev that is computed bye, but also the list of call graph edgesc that are invoked in the

course of computing that value. An analyzer is then defined using anon-standard abstract semantics

(NSAS), and the analyzer is correct if the NSAS corresponds to the non-standard semantics. Since

the correctness of such an abstract interpretation depends on the choice of non-standard semantics,

the non-standard semantics in effectdefinesthe analysis problem.

Shivers used the abstract-interpretation framework to describe an entire family of type-inference

algorithms for Scheme [59]. The algorithms within the family are differentiated by the following
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two parameters:

• Abstract values, or types, are an abstraction of program values.

• Abstract contours, or context, are an abstraction of control and environment context. Context

is discussed further insubsection 2.3.2.

Jagannathan and Weeks later describe a similar framework that includes other algorithm parameters

[39]. Sharir and Pnueli also use abstract interpretation in their early description of interprocedural

data flow [57]. Garau uses abstract interpretation to implement his Smalltalk type inferencer [27].

2.3.1.2 Constraints

The constraintsframework describes algorithms asgeneratinga number of constraints from the

program and thensolvingthose constraints to find information about the program. Constraints are

usually generated by simple syntax analysis. For example, every statement of the form [x := y]

might generate a constraint of the formt x is a supertype of ty, wheretx and ty are variables

representing a type. A solution to the constraints is an assignment for all of the analysis variables

(tx, ty, . . . ) such that all of the constraints are satisfied.

Constraints come in a variety of forms, and each form leads to a different method of solution.

Constraints such astx v ty, “tx is a subtype ofty,” lead to iterative solutions similar to those used

in classic intraprocedural data flow. Conditional constraints, such astr : T ⇒ tx v ty, capture data

flow in higher-order languages. In this example, the constraint claims that iftr includes typeT, then

the constrainttx v ty becomes effective. Such constraints capture new data-flow paths becoming

feasible as control-flow paths become feasible. Equality constraints, such astx ≡ ty, lead to the

unification-based algorithms discussed further insubsection 2.3.4.

Implementations take considerable liberty within the general constraints framework. Frequently,

constraints are not represented explicitly; since constraints are typically closely based on program

syntax, the constraints in many algorithms may as well be inferred as the analyzer progresses instead

of in a separate constraint-generation phase. Additionally, even when constraints are explicit in the

implementation, they are not always generated until there is reason to believe they will influence

the final result. In particular, a highly context-sensitive algorithm frequently has many conditional

constraints that never become effective.
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Constraints can be simplified considerably without affecting the solution to those constraints.

Some researchers have obtained substantial speed improvements by performing such simplifications

before proceeding to solve the constraints [54, 25, 6].

A large number of data-flow research projects use the constraints framework, including the work

of: Kaplan and Ullman [41]; Suzuki [62]; Henglein [36]; Oxhøj, Palsberg, and Schwartzbach [51];

Emami [23]; Agesen [2]; Steensgaard [61]; DeFouw, Grove, and Chambers [20]; Flanagan and

Felleisen [25]; Tip and Palsberg [67]; Aiken [6]; Wang and Smith [70]; and von der Ah́e [69].

2.3.1.3 Demand-Driven Analysis

Demand-driven algorithms are organized aroundgoals. A client postsgoals that the algorithm is

to solve, and the algorithm itself may recursively post more goals—subgoals—in order to solve the

initial goals. The goal-subgoal relationship may be cyclical: a goal can be a subgoal of one of its

subgoals. When there is a cyclical subgoal graph, the algorithm typically update goals repeatedly

until every goal is consistent with its subgoals.

Demand-driven algorithms find information “on demand.” Instead of finding information about

every construct in an entire program, they find information that is specifically requested. Several

demand-driven versions of data-flow algorithms have been developed [55, 22, 4, 35, 21].

There are two primary advantages of a demand-driven analysis over anexhaustive analysis.

First, a demand-driven algorithm analyzes a subset of the program for each goal. If only a small

number of goals are needed, and only a limited portion of the program is analyzed while solving

each goal, then a demand-driven algorithm can finish more quickly than an exhaustive algorithm.

The exhaustive algorithm must analyze the entire program (or at least the live portion of it), while

a demand-driven algorithm can focus on the parts of the program relevant to the initial goals. This

advantage is particularly important for interactive program-understanding tools, where users ask the

tool for information on whatever code they are currently viewing.

Second, demand-driven algorithms can adaptively trade off between precision of results and

speed of execution. If the algorithm completes quickly, then it can try more ambitious subgoals

that would lead to more precise information about the target goal. Likewise, if the algorithm is

taking too long, it can give up on subgoals and accept lower precision in the target goal. This idea
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is explored in the next chapter.

The primary disadvantage of a demand-driven analysis is that it only finds information about

those constructs for which goals have been posted. If a client is in fact interested in information

about all constructs in an entire program, then it must either post an enormous number of goals, or

it must run the analysis many times with different initial goals. Thus a demand-driven analysis is

typically slower than an exhaustive analysis if the client does, in fact, want information about the

entire program.

2.3.2 Context and Kinds of Judgements

Type-inference algorithms typically produce one typejudgementfor each variable of a program.1

Algorithms differ widely, however, in the judgements they process before producing their final

results. When an algorithm processes multiple judgements for each variable, the algorithm is called

context-sensitiveor polyvariant. Other algorithms, at the opposite end of the spectrum, process

judgements that each describe multiple variables. In the middle of the spectrum are algorithms that

process exactly one type judgement per variable. Examples are Kaplan and Ullman’s algorithm [41]

and 0-CFA[59].

At one end of the spectrum, context-sensitive algorithms process multiple judgements for each

variable of the program. The judgements for a particular variable are distinguished by theircontexts.

A context, broadly, is some assumption about the state of execution. A judgement only applies when

its context matches the state of execution. When the context does not match, the judgement states

nothing and is trivially correct, much as an implication in logic is vacuously true whenever its

assumption is false.

A judgement with a specific context applies only to a small portion of possible execution states.

To produce final judgements with no context, the algorithm must analyze each variable under

enough contexts that all possible execution states are matched by at least one of the contexts. If

the algorithm uses restrictive contexts that only match a small portion of execution states, then the

algorithm must analyze each variable under a large number of contexts; likewise, if the algorithm

1For clarity of exposition, algorithms are described in terms of assigning types to variables, even though many al-
gorithms assign types to other syntactic elements such as expressions, functions, classes, or methods. The distinction is
irrelevant for the present chapter.
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uses broadly applicable contexts, then it needs to analyze under fewer contexts per variable. Specific

contexts tend to find more specific final information, but also tend to require more total execution

time due to the increased number of judgements that are studied [32].

One widely studied kind of context is thecall chain [57]. A call chain specifies which call

statements are at the top of the call stack. For example, “the immediate caller is statement 3 of

methodfoo,” or, “the immediate caller is statement 3 of methodfoo, and its caller is statement 4

of methodbar.” The number of call statements in a chain is typically limited by a constant that

is a parameter of the algorithm. For example, an algorithm might use call chains of length 4. The

number of contexts per variable is at worst exponential in the length of the call chains, with an

exponent base that is linear in the size of the program. Two of the many algorithms that use call

chains are k-CFA [59] and Emami’s points-to analysis [23].

Another widely used kind of context is theparameter-types context. A parameter-types context

specifies the types of parameters of the currently executing method. For example, “the first param-

eter is anInteger and the second is aFloat.” In an object-oriented language, a parameter-types

context can also specify the type of the method receiver, e.g. “the receiver is anInteger and the

first parameter is aFloat.”

There are subdivisions within the general approach of parameter-types contexts. The Cartesian

Products Algorithm (CPA) uses contexts where each parameter type is a specific class; thus, the

contexts for each method correspond to the cartesian product of the classes in the type of each

parameter [2]. To contrast, the Simple Class Sets (SCS) algorithm chooses one parameter-types

context for each combination of types that appear at some call site in the program [32].

The termscontextandcalling contextare common [57], but other terms have been used as well.

Agesen discusses multipletemplatesof a method, where the templates differ in what this document

calls context [2]. Shivers’ mathematical formulation of control-flow analysis in Scheme defines

context usingabstract contoursandcontour-selection functions[59].

While the present project usesCPA-style parameter-types contexts, this aspect of type inference

is not settled. One call-graph survey[32] gives empirical results about their effectiveness in Cecil and

Java, with algorithms using a traditionalcontrol process(seeChapter 3). However, more empirical

research is needed before it is possible to characterize the different kinds of context under broader
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circumstances, especially in light of the new control process described in the present work.

Finally, at the opposite end of the spectrum from context-sensitive algorithms, there are al-

gorithms that process judgements that each apply to multiple variables. For example, theXTA

algorithm makes judgements of the form, “any variable in methodm is of typet” [ 67]. Tip provides

evidence thatXTA is effective for Java programs, but this author knows of no attempt to use this

approach in a language without static types. Perhaps, static types counteract the loss of precision

due to mixing multiple variables in the same judgement. Without static types, the approach may be

too imprecise to yield useful results. To date, no empirical evidence is available to decide.

2.3.3 Program Expansion Before Analysis

Programexpansionis an approach, not used in the present work, for gaining context-sensitive anal-

ysis without using context. The approach is to duplicate portions of the program before the main

analysis executes. The duplication increases the size of the program that the main portion of the

analyzer processes. When expansion is used, the analysis as a whole can find context-sensitive

information even if the main analysis is not context sensitive.

Expanding calls is one way to expand programs before analysis [51]. For each method name

m and each call statements that invokes a method namedm, a new method namems is computed.

All methods namedm are given an exact duplicate for each suchms except that the name has been

changed fromm to ms. All message-send statementss that invoke a method namedm are rewritten

to invokems instead ofm. This transformation yields a program that behaves equivalently to the

original program. However, each duplicate of a methodm may now be analyzed independently.

The analysis becomes context-sensitive. The results are equivalent to using call-chain contexts with

chains of length 1.

Expanding away inheritance is another way to expand object-oriented programs before analysis

[31, 51]. Each method is copied to each class that inherits the method. As a result, each method is

analyzed multiple times, once for each possible class of the receiver. The results are equivalent to

using parameter-types context, where the receiver type of a context is a single class and all parameter

types of a context are the all-inclusive type.

Context, in general, is more flexible than expansion and is more convenient to discuss. Notably,
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at least some work treats expansion as a formalism and uses an implementation that only duplicates

methods on demand [31]. The present work uses context instead of program expansion.

2.3.4 Unification-Based Data Flow

Some algorithms consider the direction of data flow while others do not. The latter algorithms are

said to useunification, because they proceed by equating (unifying) types with each other. Most

of the algorithms cited in this chapter use directional data flow because it is more precise, but

unification-based analysis can be executed more quickly.

Notable unification-based data-flow algorithms include those of Henglein [36], Steensgaard

[61], and DeFouw et al. [20].

2.3.5 Stopping Early

The theoretical framework varies among type inference algorithms. Early algorithms such as Kaplan

and Ullman’s begin with trivially safe judgements such as “variablex has typeAnything,” and then

they examine the program to find more precise judgements based on those that have already been

made [41]. The resulting judgements are known to be true by an inductive argument over the

number of judgement updates: the initial judgements are true, and each judgement derived from a

true judgement is true. A benefit of such algorithms is that they may stop at any time and still have

correct answers; further processing simply gives more precise answers.

All later algorithms give up this ability to stop early, in exchange for using an approach that

gives more precise results. They begin with overly precise judgements such as “variablex has type

Nothing” and then examine the program to find places where the judgement is too precise and

needs to be weakened. Such algorithms must continue until they reach a fixed point and have no

further weakening to perform; if they stop early then some of the types may still be too precise. This

approach requires a more sophisticated argument, often based onabstract interpretation. Instead of

inducting over judgement updates to show that the results are correct, one would typically induct

over steps of execution: the results are correct in the initial state, and whenever one steps execution

from one state to the next, the results remain correct.

The extra precision of such algorithms comes from avoiding self-sustaining inference loops. For

example, if a program includes statements “x := y” and “y := x”, then any type judged forx can
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never decrease lower than that judged fory, and vice versa. If either of them starts as typeAnything

then that is what they both will be when the algorithm terminates. To contrast, algorithms that start

with Nothing must simply ensure that whenever the type ofx increases, the type ofy increases

commensurately;x andy must have the same type, but that type can be very precise.

2.3.6 Adaptation After Analysis Begins

A few algorithms involve some adaptation of approach while the algorithm executes. Among these,

most only adapt the approach after one complete set of judgements has been obtained; reflow anal-

ysis [59] is an example, as is Dubé and Feeley’s algorithm [21].

The algorithm family of DeFouw, Grove, and Chambers [20] deserves special mention. The al-

gorithms in this family adapt the directionality of data flow while they execute. They begin by using

directional data flow, but after any one judgement has been visited more than a threshold number of

times, the algorithm adapts by starting to use unification-based data flow for that judgement. Such

algorithms get most of the speed benefit of purely undirected data flow, while gaining a significant

amount of the benefit of directed data flow.

2.4 Scalability

Several implementations of type inference algorithms have been experimentally tested. This section

gives a summary of the results of those experiments as a way to examine the scalability of existing,

implemented type inferencers.

Since the experiments use different computers, code bases, and techniques of measuring per-

formance, it is difficult to compare the results directly. Instead, this section will give three pieces

of information on each experiment: the largest program on which the experimenter reported the

implementation is effective, the kind of context sensitivity that the algorithm uses, and whether the

algorithm uses directional data flow. The first piece of information gives an idea of how well the

implementation scales, and the second two give an idea of the precision of the results of the im-

plementation. Both directed data flow and more context sensitivity give more precise results at the

expense of requiring more time.

The reported lines of code deserve some mention. The reported number below is consistently
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the number of lines of code processed by the algorithm. Many algorithms based on abstract-

interpretation automatically ignore code that they determine to be dead code. In such cases, the

amount of code analyzed might be much less than the total code in the program. This difference

is important if one is considering tools for cases where the live code is a small fraction of the total

code. The purpose of this section, however, is to survey the performance characteristics of existing

type inferencers. For that purpose, it is appropriate to report the amount of code actually analyzed

by the analyzer.

Ole Agesen performed experiments on his Cartesian Products Algorithm (CPA) in 1995 [2].

The largest example he reports is an application extraction involving the analysis of 4200 lines of

live code. This example required 30 seconds of execution time on a 167 MHz UltraSparc. The

analysis is context sensitive using CPA sensitivity, and it uses directional data flow.

Flanagan and Felleisen implemented acomponentialdata-flow analysis and timed its execution

in 1999 [25]. The largest program they analyze has 17,661 lines of code. The analysis is not context-

sensitive but does use directional data flow. On a 167 MHz UltraSparc the analysis required 265

seconds.

Grove et al. implemented a variety of type-inference algorithms2 and reported on their perfor-

mance in 1997 [32]. Their results are summarized inTable 2.1. The largest dynamically typed3

program they study is 50,000 lines of application code plus 11,000 lines of library code. They test

the algorithms on a 167 MHz UltraSparc with 256 MB of memory. On the 50,000 line program,

they find that none of their context sensitive algorithms complete in the available time and memory.

The only context-insensitive type-inference algorithm they try (the other context-insensitive algo-

rithms do not infer types) is based on 0-CFA [59] and succeeds on the 50,000 line program in three

hours.

Grove et al. conclude from their experiments that context-sensitive algorithms such as k-CFA

do not scale to large programs in dynamic languages such as Cecil:

2They actually implement call graph recovery algorithms, but most of the algorithms are just as useful for type
inference.

3The Java experiments they report are irrelevant to the present work.
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Table 2.1: Each box gives the running time and the amount of heap consumed for one algorithm
applied to one program. Boxes with∞ represent attempted executions that did not complete in 24
hours on the test machine.

b-CPA SCS 0-CFA 1,0-CFA 1,1-CFA 2,2-CFA 3,3-CFA
richards 4 sec 3 sec 3 sec 4 sec 5 sec 5 sec 4 sec
(0.4 klocs) 1.6 MB 1.6 MB 1.6 MB 1.6 MB 1.6 MB 1.6 MB 1.6 MB
deltablue 8 sec 7 sec 5 sec 6 sec 6 sec 8 sec 10 sec
(0.65 klocs) 1.6 MB 1.6 MB 1.6 MB 1.6 MB 1.6 MB 1.6 MB 1.6 MB
instr sched 146 sec 83 sec 67 sec 99 sec 109 sec 334 sec 1,795 sec
(2.0 klocs) 14.8 MB 9.6 MB 5.7 MB 9.6 MB 9.6 MB 9.6 MB 21.0 MB
typechecker ∞ in f ty 947 sec 13,254 sec ∞ ∞ ∞
(20.0 klocs) ∞ ∞ 45.1 MB 97.4 MB ∞ ∞ ∞
new-tc ∞ ∞ 1,193 sec 9,942 sec ∞ ∞ ∞
(23.5 klocs) ∞ ∞ 62.1 MB 115.4 MB ∞ ∞ ∞
compiler ∞ ∞ 11,941 sec ∞ ∞ ∞ ∞
(50.0 klocs) ∞ ∞ 202.1 MB ∞ ∞ ∞ ∞

The analysis times and memory requirements for performing the various interpro-

cedurally flow-sensitive algorithms on the larger Cecil programs strongly suggest that

the algorithms do not scale to realistically sized programs written in a language like

Cecil.

DeFouw et al. study a family of type inference algorithms that sometimes use unification-based

data flow [20]. Most of them begin by using directional data flow, changing to non-directional data

flow when analyzing parts of the program that are proving expensive to analyze. They seem to

use the same test machine and code samples as in the Grove et al. survey of call graph recovery

algorithms. They again find that purely directional analyses fail to finish in the available time for

the 50,000 line program, nor even for their 20,000 line programs. Some of their hybrid algorithms

do complete on the 50,000 line program, though not the hybrid algorithms that allow any context

sensitivity. The fastest hybrid algorithms they tried, which have some directional data flow but no

context sensitivity, finish in 50-100 seconds on the 50,000 line program.

Finally, von der Ah́e implemented a type inferencer and dead code remover for Smalltalk in

the Resilient environment4 in 2004 [69], though he did not tune them for speed. His inferencer

uses DCPA context sensitivity, which is more context sensitive than Agesen’s CPA. He tested his

implementation on a 1.7 GHz Pentium 4 Mobile CPU. His dead code remover succeeded in 12-14

4http://www.oovm.com
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seconds to extract a 237-method program from the 1238 methods it was embedded in. He reports

no other

In summary, context-insensitive analysis with undirected data flow is known to be effective on

50,000-line programs and may scale to even larger programs. Likewise, hybrid variants of such

algorithms that use some directed data flow should be slower only by a constant factor [20].

The more precise context-sensitive algorithms, those algorithms that the present work focuses

on, are only known at this time to scale to approximately 30,000 lines of code. Due to the cubic

or slower performance of such algorithms [34], they unlikely to be practical in the near future on

much larger programs, even as CPU speeds and memory sizes increase. Some modification of the

existing context-sensitive algorithms is necessary to achieve scalability.

2.5 Type Checking

Two other areas of related work should also be discussed: the problem oftype checkingitself, and

the problem of finding more precise types in type checked languages.

The problem of type checking is to verify that a program will not commit a type error when it

executes, i.e., that a program will not invoke an operation with arguments whose type is invalid [52].

Type checkers rely on having a type associated with syntactic elements such as expressions, variable

declarations, and function declarations. Type checking has received an extraordinary amount of

attention from programming language researchers [47, 28, 46, 58, 9, 7], including the development

of the Strongtalk type checker for Smalltalk [14]. Almost all type checkers rely on some amount

of type inference so that programmers do not need to write down a type for every expression in a

program. At the extreme are type checkers such as SML’s [48] that include a type inferencer so

thorough that the programmer typically needs to write down no types at all.

Type checking is a separate problem from the type-inference problem discussed in this disserta-

tion. A type checker may reject a program outright, while the type inferencers studied in the present

work must succeed on any program. Programmers using a type checker typically expect to modify

their program in response to issues identified by a type checker. To contrast, programmers using

a type inferencer (or a tool based on type inference) are seeking to find more information about

an existing program, and they will not necessarily change the program even if the tool points out
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potential problems.

This difference results from a fundamental difference in the property proved by each tool. A

type inferencer must only find types that arecorrect, that is, large enough to include all values that

the associated syntactic element will hold when the program runs. A type checker must find types

that are additionally small enough that any operation the program applies to the associated syntactic

element is appropriate to the type. Since some programs do have type errors, it is inevitable that

a type checker must reject some programs. A type inferencer, meanwhile, can succeed on any

program; at worst it can assign a type ofAnything to everything in the program. In the extreme,

if a type inferencer analyzes a program that is certain to commit a type error when it runs, the

inferencer must still be careful to find correct types for the portion of execution preceding the type

error.

Another separate problem is that of improving the types that a type checker finds. For example,

given a variable in Java[30] that has an abstract Java interface type, one might wish to learn more

specifically which concrete classes the variable will actually hold at runtime. In many cases it will

not hold every possible class that matches the interface, and in some it will hold only one class.

Examples efforts are those of Tip and Palsberg in 2000 [67], and Wang and Smith in 2001 [70].

Since such algorithms start with the reasonable types and call graphs given by the language, they

solve an easier problem than the present one.

2.6 Knowledge-Based Systems

Knowledge-based systems, also calledexpert systems, provide a general theory for the present area

of enquiry. A knowledge-based system has an architecture with four components: aknowledge-

acquisition module, a knowledge base, an input/output interface, and aninference engine[49]. A

demand-driven type-inference algorithm follows this architecture.

The acquisition module of a knowledge-based system provides the initial information and in-

ference rules that the system may use. For a type inferencer, the acquisition module includes two

parts. First, it includes information about the particular program being analyzed. Such information

is provided through tools such as parsers and static semantic analyzers. Second, it includes infer-

ence rules particular to the type-inference algorithm. The acquisition-level information and rules
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used byDDP are described inChapter 4andChapter 6respectively.

The knowledge base holds the information from the acquisition module as well as information

inferred as the analyzer runs. This information can include control information such as what goals

the inferencer is currently pursuing. For a type inferencer, the knowledge base includes type judge-

ments and other control- and data-flow judgements that have been inferred about the program. The

judgementsDDP uses are described inChapter 5.

The input/output interface interacts with the user. Most type inferencers use a simple inter-

face that simply accepts questions from a user and then reports results. In general, however, an

input/output interface might interact with a user as it deduces information and might expend con-

siderable sophistication on the problem of explaining inferred results. Mr. Spidey is just such a

tool with a sophisticated interface [24]. The input/output interface forDDP is the Chuck program

browser described inChapter 10.

The inference engine repeatedly applies rules of inference to update the knowledge base. Typical

type inferencers use a simple inference engine that simply applies every available inference rule until

there are no more possible updates to the knowledge base. Adaptive demand-driven algorithms,

discussed above, are an exception: such algorithms have a variety of available strategies and choose

among those strategies in some fashion. The most interesting part ofDDP is its adaptive inference

engine, described inChapter 3andChapter 7.

2.7 Semantics of Smalltalk

The formal work in this dissertation is based on a new description of Smalltalk’s semantics that is

detailed inChapter 4. It is worth reviewing a few existing descriptions and the new one’s relation to

them.

The earliest full description of Smalltalk semantics appears inSmalltalk-80: The Language and

Its Implementation, by Goldberg and Robson [29], often referred to asthe blue book. In addition to

a lengthy informal description and rationale, the blue book includes a complete interpreter written

in the language itself. Most early semantics of Smalltalk refer to the blue book’s definition of the

language.

Unfortunately, the blue book’s description does not give blocks the full semantics of closures. It
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defines blocks without temporary variables at all. Later implementations of Smalltalk include full

closure semantics including reentrant blocks and nested mutable variables. However, all semantics

that mimic the definition of Smalltalk in this book must necessarily use a limited definition of blocks.

Nested mutable variables are a ubiquitous feature of modern Smalltalk implementations, and

accordingly they are required by the current ANSI Smalltalk standard [8]. Unfortunately, they

add complexity to descriptions of the semantics and non-trivial requirements for correct program

analysis. Given these factors, the need to describe nested mutable variables is the most compelling

reason that a new semantics of Smalltalk is included in the present work.

Wolczko has developed a denotational semantics of Smalltalk [71] as part of a larger project

studying object-oriented semantics in general [72]. His Smalltalk semantics describes a variety

of language features including not only the expected features such as objects, classes, messages

and methods, but also primitives (including three important examples) and arrays. Nevertheless,

in order to stay true to the blue book’s semantics, Wolczko begrudgingly omits nested mutable

variables from his Smalltalk semantics. His paper describing Smalltalk semantics includes a number

of comments on the lack of nested mutable variables and other limitations of blocks from the blue-

book specification. For example, Wolczko writes:

The absence of temporary variables from blocks was a curious omission in the design

of Smalltalk. Later we shall meet other strange features of blocks. [71]

Wolczko’s Smalltalk semantics consistently avoids a general description of nested temporary

variables. Instead, he suggests treating nested temporary variables as syntactic sugar, a language

feature that is unimportant semantically and can be interpreted by rewriting all uses into features

that do exist in the low-level semantics. Wolczko describes two techniques for rewriting Smalltalk

blocks that access non-local variables: fixing the values of non-local accesses at the time a block

is evaluated into a closure, and replacing mutable variables by non-mutable variables that hold a

reference to a mutable cell of memory. The combination of these rewrites are sufficient to capture

the semantics accurately, albeit indirectly. This rewriting approach is a good trade off for a project

whose purpose is to focus on the specifically object-oriented parts of the language semantics.

The present work has a different purpose: studying data flow in Smalltalk. Since assignments to
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Table 2.2: Core of Abadi and Cardelli’s theory of objects
a,b ::= terms
x variable
[l0 = ς(x0)b0, . . . , ln = ς(xn)bn] object formation
a.l field selection or method invocation
a.l ⇐ ς(x)b update of field or method

temporary variables are a common and tricky mechanism for data flow, it is imperative to describe

nested mutable variables at some level in the associated theory. The present work elects to describe

nested mutable variables directly at the level of the semantics. This approach requires a somewhat

more complex description of the semantics, but in return, it removes the need to add additional lem-

mas and mathematical structures at a higher level to accurately describe data flow through nested

temporary variables. Further, it results in a simpler correctness theorem whose statement is closer

to the language semantics. Additionally, some language features, including arrays and most prim-

itives, have straightforward effects on data flow analysis (the present work conservatively analyzes

flow through arrays), and a new semantics is an opportunity to remove those features that, for our

purposes, provide more of a distraction than an elucidation.5

Abadi and Cardelli have also developed a general theory of object-oriented semantics [1]. Their

theory is tuned for discussion of static type systems for object-oriented languages. They discuss

a number of static-type issues such as subclassing versus subtyping, types for class-based versus

object-based languages, self types, universally and existentially quantified types, and covariant typ-

ing. As with Wolczko’s semantics, Abadi and Cardelli’s choices are appropriate for their purpose

but cause difficulties for developing the theory behind a data-flow algorithm. The syntax of Abadi

and Cardelli’s core language is given inTable 2.2. Notice that methods and fields are treated equiv-

alently. The language thereby allows copying of methods from one object to another, a powerful

feature normally reserved in a language for reflective development tools. On the other hand, higher-

level constructs such as classes, inheritance, and blocks (lambda abstractions), are left out of the

core language and left to be treated as syntactic sugar. These choices work well for Abadi and

Cardelli’s expressed purpose of studying object-oriented semantics and the associated static type

5Of course, the implementation must correctly support these features even though the theory ignores them. The details
are given inChapter 9.
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systems. However, for the present purpose, the theory is simplified if extremely powerful features

like method update are removed while higher-level features important to analysis are described

directly.
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CHAPTER III

DEVELOPING A NEW ALGORITHM

The problem concerning the present work is to infer types in large programs, particularly as an aid

to program-understanding tools. Given the existing work on the problem, how should one proceed?

This chapter develops a new type inference algorithm to address this problem. The algorithm is not

yet described in full; some details are left forChapter 6andChapter 7.

3.1 Observations

Consider a few observations from the existing published work and on the nature of the problem

itself. These observations point the way forward to an algorithm more likely to solve the stated

problem.

First, observe that existing context-sensitive algorithms do not scale to larger programs. Even

0-CFA has difficulty with 50,000-line programs [32]. CPA and the k-CFA’s become impractical at

even smaller sizes. If one wants to analyze programs with hundreds of thousands of lines of code,

then one should seek some fundamental change from the existing published algorithms.

Second, note that within any realistic large program, there are many type inference questions

that are easy to answer. If nothing else, the types of literal expressions are easy to derive. For

example, the type of42 is clearly something likeInteger—it does not matter where the42 is

embedded in some large program. Additionally, realistic programs tend to have many variables

where some short investigation can find a type. For example, if a variablePi is only assigned one

value in the program, and that value is a literal, then the type ofPi is the type of the literal. If one

wants a useful algorithm, then one should seek an algorithm that can at least find answers to the

easy questions.

Likewise, in most realistic large programs, there are type inference questions that are imprac-

tical to answer. Consider the argument of a method named #new :. There are many hundreds of

expressions that send the message #new :, and deciding the type of the argument to the method
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requires coping with all of those expressions in some fashion. For at least some #new : methods,

this is likely to be impractical in a sufficiently large program. Therefore, if one wants a scalable

algorithm, one should seek an algorithm that can give up at some point instead of tilting at every

windmill indefinitely.

Finally, there are precise type inferences that do not require precise types at every step of

the derivation leading to the final inference. For example, consider an expression like “regex

matches: someString”. To find the type of the expression, the inferencer will find a type for

regex and then analyze each method that, based on that type, might be invoked by the statement.

However, it might not matter whetherregex is determined to be precisely the set of regular expres-

sion classes, or the ultimately impreciseAnything type; in either case, the inferencer will find that

all matches: methods may be invoked, and thus it will find the same type for the expression “regex

matches: someString”. Because of such scenarios, a type inference algorithm can give up on

subproblems without necessarily losing precision in the final answer. If giving up appears to be

necessary, the inferencer should at least attempt to give up on subproblems before giving up on the

main problem posed to the inferencer.

3.2 Approach

The previous observations lead to several ideas for building a scalable and useful algorithm.

One general idea is that the algorithm could spend some resources searching for an answer and

then give a trivially correct answer if none can be found before the allocated resources are exhausted.

This general approach implies that easy questions will be answered well, while difficult questions

will be answered poorly but in reasonable time.

For this approach to be effective, it should be possible to use a different strategy on each ques-

tions that has been posed; otherwise, if any one question is difficult, the algorithm would be forced to

give up on the entire program. Ademand-drivenalgorithm has the necessary property. A demand-

driven algorithm answers each question individually, thus gaining has the flexibility to choose a

different strategy for each question.

A natural refinement is to allow the algorithm to give up on individual subgoals instead of just

on the initial posted goals. This way, the algorithm can give precise types to an additional number
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of queries: those queries that have expensive subgoals that do not influence the final result. This

refinement is calledpruning subgoals. A goal is pruned by giving it a trivially correct answer, thus

ensuring that the goal needs no subgoals.

In order to support subgoal pruning, the goals of the demand-driven algorithm must be formu-

lated carefully. For a goal to be prunable, it must admit some answer that is definitely true, and that

answer must be quickly computable—ideally, in constant time. For example, the goal “what is the

type ofx?” is prunable, because one can answer “x is of typeAnything.” On the other hand, one

cannot prune the goal “summarize the effects of calling methodm, and update all goals to account

for those effects”.

This approach could be summarized by framing the problem as a knowledge-based system

(KBS) [49] and then using a non-trivial inference engine. The propositions the KBS processes

are data-flow judgements; the goals of the KBS are the same as the goals of this approach; the

inference rules of the KBS are justification tactics; and the non-trivial inference engine continually

chooses for each goal whether that goal should be pruned or pursued further.

3.3 The DDP Algorithm

TheDDP algorithm uses the approach described previously. It is demand-driven, and it prunes sub-

goals. This section gives the overall structure ofDDP. Later chapters elaborate on several details.

The overall algorithm, summarized inFigure 3.1, is a standard demand-driven algorithm mod-

ified to sometimes prune goals. Agoal is a question the algorithm is trying to answer. Every goal

being pursued by the algorithm has a tentative answer to its question. As the algorithm progresses,

those answers are repeatedly adjusted.

The standard part of the algorithm is that there is a setworklist holding a set of goals that need

to be updated. The algorithm repeatedly removes a goal fromworklist and updates its answer.

If the answer actually changes, then any goals depending on the updated goal are added back to

worklist for future consideration—this way, tentative answers to goals can be updated in light of

new information whenever the subgoals they depend on are given new answers. The algorithm

terminates whenworklist is empty and thus all relevant goals are consistent with their subgoals. At

that point, all relevant goals have answers that are in fact correct.
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procedure InferType(var)

rootgoal := typegoal(var)

worklist := { rootgoal }

while worklist , ∅ do

if pruner wants to run

then Prune()

else UpdateOneGoal()

return GoalAnswer(rootgoal)

procedure UpdateOneGoal()

Remove g from worklist

changed := Update(g)

if changed then

deps := GoalsNeeding(g)

worklist := worklist ∪ deps

procedure Prune()

for g ∈ ChoosePrunings() do

prune g

worklist := Relevant(rootgoal)

Figure 3.1: TheDDP algorithm.
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The UpdateOneGoalfunction modifies the current answer of one goal to be consistent with

the answers to the goal’s subgoals. For example, it might change the answer of the goal from “x

is an Integer” to “x is an Integer or a Float”, in order to account for new information in the goal’s

subgoals. The functionUpdate performs this modification, and it returns a boolean indicating

whether the goal’s answer needed changing (it is possible that the update leaves a goal with the

same answer as before).

The precise behavior ofUpdate is given inChapter 6. Note, though, that if the goal being

updated needs new subgoals that do not already exist, then those goals are created, given a maxi-

mally precise answer (e.g., the empty type holding no values), and added toworklist . If an update

causes a change to the goal’s answer, thenUpdateOneGoaladds all goals that depend on the goal

to worklist .

The modification from the standard demand-driven algorithm is that, in some iterations, the

algorithm callsPrune andprunesgoals instead of updating a goal. TheChoosePruningsfunc-

tion chooses which goals should be pruned and is described further below.ChoosePruningsis a

heuristic, and there are many possibilities for its specific behavior; seeChapter 7for some of them.

Whatever goals the function chooses are pruned by being given trivially correct answers, thus en-

suring that they require no subgoals. After the chosen goals are pruned,worklist is reset to hold

preciselyrootgoal plus all direct and indirect subgoals ofrootgoal.

To increase the effectiveness of pruning, theGoalsNeedingfunction should not return goals that

have become irrelevant due to pruning; otherwise, some pruning would essentially be undone. In

order to efficiently return this limited set, an extra setcompletedcan be maintained. Thecompleted

set holds those goals that have been updated and whose immediate subgoals have not had a change

in value. Whenever a goal is updated, it should be added tocompleted, and whenever a goal is

added toworklist , it should be removed fromcompleted. Thus, as the algorithm progresses, goals

that are relevant move back and forth betweencompletedandworklist , always being in at least one

of them. Goals that are irrelevant due to pruning are removed from both sets. TheGoalsNeeding

function can then return only goals which are present in eithercompletedor worklist .

30



3.4 An Example Execution

This section traces one execution ofDDP, in order to clarify how the general algorithm works. The

example execution analyzes a program that includes the code ofFigure 3.2, among a great deal of

other code that is not listed.

• ClassA, methodfoo:, is:

foo: p1

X ← Y.

X doStuff.

X ← p1.

X doMoreStuff.

ˆX

• ClassA, methodbar, is:

bar

Y ← 10.

ˆY

• ClassA, methodbaz, is:

baz

| s |

s ← self.

s foo: Y.

ˆs

• ClassA, methodextraneous, is:

extraneous

Q ← 10.

Q foo: Q.

ˆQ

Figure 3.2: Code for example execution. The relevant methods of some large program are listed; it
is assumed that a great deal of other code is also present in the program. The syntax is Smalltalk;
the details are described inChapter 4. In agreement with the Smalltalk convention, all uppercase
variable names refer to global variables.

The figures showing the progress of the algorithm show theknowledge baseof all relevant goals.
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An example goal is shown inFigure 3.3. On the left is the question the goal attempts to answer:

What is X?On the right is a tentative answer to that question: the typeBottom, a type designating

thatX is never assigned a value. The center box inside the goal is empty. If it instead were marked

with a J in the middle, then that goal would be justified with respect to its immediate subgoals.

Since it does not have aJ, this goal needs more work.

The worklist of DDP is not shown explicitly in the diagrams. Instead, the worklist consists

of those goals that are not justified and thus are not marked with aJ. To simplify the figures, the

ordering of the worklist is not shown; it is irrelevant for the important aspects ofDDP.

The algorithm begins asInferType is called with argumentX. The algorithm inserts a type goal

for X into the knowledge base, arriving atFigure 3.3. Notice that whenever a new goal is created, it

is given an initial answer that is extremely precise, e.g., type⊥, an answer which is almost certainly

overly specific. That answer will be broadened as the algorithm progresses.

Suppose that the algorithm proceeds to callUpdateOneGoal instead ofPrune for several itera-

tions. The first goal it chooses to update must be the one for the type ofX. Update in this case will

find all statements that modifyX. In this case there are two, and the algorithm creates a subgoal for

each one of them. Then, the algorithm updates the type ofX to account for the current answers in

the subgoals; since the subgoals are newly created, they still have answers ofBottom, and thus the

type ofX is also left asBottom. The root goal is marked as justified, arriving atFigure 3.4.

The algorithm must now choose a new goal to update. It can choose eitherY or p1. Suppose it

choosesY. There is only one statement in the program that modifiesY, and it assigns the literal10

to the variable. Thus, the type ofY is preciselyInteger.1 The algorithm updates the answer toY’s

type goal. Since this type is a change from the old type, i.e.Bottom, the algorithm also marks as

unjustified all goals that depend on this type goal (i.e., it puts those goals back on the worklist). In

this case, the only goal depending onY’s type goal is the root goal. The execution state arrives at

Figure 3.5.

The algorithm might now choose to update the root goal. The same analysis is repeated from the

first time this goal was updated, but now instead of creating new goals forY andp1, the algorithm

1For simplicity, this example ignores the fact that in Smalltalk all variable bindings holdnil when they come into
existence.
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can reuse the goals that already exist. The algorithm updates the answer to the root goal to be

“Integer or Bottom,” which, sinceBottom is empty, is the same as simply “Integer”. The root

goal is then marked as justified. Since there are no goals depending on the root goal in this example,

there are no other goals to mark as unjustified. The execution state is summarized inFigure 3.6.

The algorithm might now update the goal forp1. To find the type ofp1, which is a parameter, the

algorithm first tries to find all message-send statements that might invoke the parameter’s method, in

this case the #foo : method of class A. A new goal is created to try and find these send statements.

Initially, the goal’s answer is that no send statements in the program can possibly invoke the method,

and thusUpdate concludes thatp1 is never assigned a value. The execution state is now described

in Figure 3.7.

Suppose now that the algorithm decides to prune some goals; i.e., it callsPrune instead of

UpdateOneGoal. Prune must choose some goals to prune. Suppose it chooses the newly created

senders goal for A’s #foo : method. The goal is given a trivially correct, extremely conservative

answer, and all goals depending on the goal are marked as unjustified. After the pruning finishes,

the algorithm removes from consideration any goals no longer relevant to the root goal; in this case,

however, all goals are still relevant, because the single goal that was pruned had no subgoals. The

execution state is now described inFigure 3.8.

There is only one goal to update, so the algorithm must choose to update the type goal forp1.

That goal must now account for all statements that might invokeA’s #foo : method. Human analysis

can show that one of the two statements actually calls some other #foo : method, but the senders

goal was pruned and thus does not have as precise of an answer as a human can find. The type goal

for p1 must then consider type goals for bothY andQ. A type goal forY already exists and is reused,

while a new goal must be created forQ. The execution state reaches that described inFigure 3.9.

The algorithm might then updateX, causing no change except to markX’s goal as justified,

reaching the state inFigure 3.10. The algorithm might then updateQ (Figure 3.11) and then update

p1 again (Figure 3.12). Since the type ofp1 did not change this time, there is no need to unmark

any goals as justified. Since no more goals need justification, the algorithm terminates.

At this point, all goals within the knowledge base are justified with respect to each other. The

justification rules are such that all goals must, in this circumstance, have correct answers. Thus the
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root goal’s answer is correct, and a correct type forX is Integer.
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Figure 3.3: Example: The initial state of the knowledge base. There is one question, “What isX?”,
and it has a tentative answer, Bottom.

Figure 3.4: Example: The root goal is updated. It now has two subgoals. Since the root goal’s
answer is consistent with all of the goal’s subgoals, the goal is marked as justified.

Figure 3.5: Example: The type goal forY is updated. Since the root goal depends on the type goal
for Y, the root goal is no longer justified.
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Figure 3.6: Example: The root goal is updated again. It is now consistent with its subgoals, and so
it is marked again as justified.

Figure 3.7: Example: The goal forp1 is updated. Sincep1 is a parameter of methodA.foo:, the
algorithm must find the senders ofA.foo: in order to find the type ofp1.

Figure 3.8: Example: The senders goal is pruned. The goal now has a sufficiently conservative
answer that no subgoals are required.
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Figure 3.9: Example: The goal forp1 is updated again. Two new subgoals are required, and the
root goal is no longer justified. Notice that the existing goal forY is reused.

Figure 3.10: Example: The goal for X is revisited. Its answer needs no change.
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Figure 3.11: Example: The type goal forQ is updated.

Figure 3.12: Example: The goal forp1 is updated again. All goals are now justified, so the algo-
rithm terminates.
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3.5 Properties of the General Algorithm

The DDP algorithm has several nice properties. First, the time of execution appears to depend

mostly on the number of goals analyzed and the number of times they are updated. It does not

appear to depend much on the size of the program. Therefore, assuming these intuitions are correct,

the algorithm should complete quickly whenever the number of nodes is restricted, even if the

analyzed program is large.

Second, the algorithm finds many short type derivations where possible. One-step derivations,

such as the type of a literal expression, are clearly found byDDP. Additionally, if a short multiple-

step derivation happens to fit within the goals that are not pruned, then theDDP will find that

multiple-step derivation as well. Note that this includes multiple-step derivations for which some

of the subsidiary judgements are not precise. Overall, there are several cases whereDDP finds a

precise answer to a type query, and when it cannot find a precise answer, it will give up in reasonable

time.

Finally, DDP can be tuned to use more or less effort. By pruning more severely, the algorithm

should finish more quickly. By pruning less severely, the algorithm should finish with better results.

Thus, the severity of pruning provides a knob on the algorithm which trades speed for precision.
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CHAPTER IV

MINI-SMALLTALK

This chapter begins the formal description of theDDP algorithm. This chapter defines the syntax

and semantics ofMini-Smalltalk, the language analyzed by the formal version ofDDP. Adaptation

of DDP for the full Smalltalk language is described inChapter 9.

4.1 Overview

The present work defines a semantics tuned for giving an accurate description and a proof of cor-

rectness of the more interesting parts of the type-inference algorithm. Since Smalltalk has such a

simple semantics, it seems worthwhile to spend a few pages describing a semantics tuned for the

present purposes in exchange for simplifying the rest of the work. This semantics includes:

• The essential parts of a class-based, object-oriented language, including classes, objects, mes-

sages, and methods.

• Single inheritance of classes.

• Blocks with full closure semantics.

• Nested mutable variables within blocks. This feature greatly increases the complexity of the

semantics and has thus been omitted from other authors’ analogs to Mini-Smalltalk. Since the

feature can introduce subtle errors into a program analysis, it is included in Mini-Smalltalk

despite the complexity it entails.

• Theperform: primitive, calledsendvar in Mini-Smalltalk, which allows invoking a method

with a computed name. This feature is non-trivial to support and also allows for subtle anal-

ysis errors.

Several features are omitted because they increase the complexity of the semantics but do not

provide new insight.
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• Arrays.

• Primitive methods such as addition and input/output.

• Processes.

• Classes as full-fledged objects.

The implementation supports these features in straightforward manners described inChapter 9.

Some reflective features are omitted because they are primarily intended to be used in the de-

velopment environment and because supporting them is beyond the scope of most program anal-

yses. Examples include the object-inspection tool that can modify objects in arbitrary ways, the

ability to reference instance variables by name (#instVarAt : and #instVarAt : put :), and the

thisContext facility for accessing the call stack.

4.2 Terminology

The terminology of this paper is carefully precise when discussing components of a message send.

It consistently uses the following terms:

• A methodis a named body of code in some class. For example, if one evaluates3 + 4, then

the+ method in class SmallInteger will respond.

• A receiveris an object that is being sent a message. In the expression3 + 4, the receiver is

the number3.

• A selectoris the name of a method. In the expression3 + 4, the selector is the identifier+.

• A messageis a selector plus a complete set of arguments. In the expression3 + 4, the

message is “+ 4”.

When discussing syntax, this paper uses Smalltalk terminology, thus keeping Mini-Smalltalk

syntax close to that of Smalltalk. For example,block statementis used instead oflambda expression.

On the other hand, when discussing semantics, the paper uses common terminology of the semantics

literature. For example,closureis used instead ofblock.
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4.3 Language Overview

Mini-Smalltalk is a language that captures the essence of Smalltalk [8]. It includes the Smalltalk

features used in application-level programming, but it does not include introspective features in-

tended for use by the compiler or debugger. It also includes some differences from Smalltalk that

simplify the theory without removing any power:

1. There are no compound expressions. Instead, there are sequences of simple statements that

use temporary variables to store intermediate results.

2. Distinctions among class, pool, and global variables are ignored. Instead, they are all treated

as global variables. The distinctions are unimportant for analysis because they only affect

visibility and otherwise have the same semantics.

3. Classes are not values. Instead,new is a syntactic form.

4. There are no return statements (designated withˆ or ↑ in Smalltalk). Instead, every block,

including the main block of a method, must include a variable to return and an indication of

whether the value should be returned from the current block or from the surrounding method.

4.4 Syntax

The abstract syntax of Mini-Smalltalk is given inFigure 4.1.

A Mini-Smalltalk program consists of a set of global variables and a finite map from class

names toclasses. Each class has an optional superclass, a set of instance variables, and a finite map

from method names to methods. Each method has a block, called themain blockof the method.

Each block has a number of parameters, a number of local variables, and a number of statements.

When the block finishes executing, it returns a value either to the statement that invoked the block

or (non-locally) to the statement that invoked the surrounding method.

Each statement has one of the following forms:

• l := self. This statement assigns the current receiver to variablel.

• l := literal. This statement assigns a literal, such as4 or ’hello world’, to a variable.
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〈program〉 ::= Program

globals: 〈label〉 ∗
classes: (〈label〉 〈class〉) ∗

〈class〉 ::= Class

superclass: (〈label〉 |undef)

methods: (〈label〉 × 〈method〉) ∗
instance variables:〈label〉 ∗

〈method〉 ::= Method〈block〉

〈block〉 ::= Block

parameters:〈label〉 ∗
temporaries:〈label〉 ∗
statements:〈statement〉 ∗
returning: 〈label〉
retFromMethod:〈boolean〉

〈statement〉 ::= 〈label〉 := self

| 〈label〉 := 〈literal〉
| 〈label〉 := 〈label〉
| 〈label〉 := new 〈label〉
| 〈label〉 := 〈block〉
| 〈label〉 := send(〈label〉 , 〈selector〉 , 〈label〉 ∗)
| 〈label〉 := sendvar(〈label〉 , 〈label〉 , 〈label〉 ∗)
| 〈label〉 := beval(〈selector〉 , 〈label〉 ∗)

〈selector〉 ::= Selector

label: 〈label〉
numargs:〈integer〉

Figure 4.1: Abstract Syntax of Mini-Smalltalk
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• l := lr . This statement assigns the contents of one variable to another variable.

• l := new classname. This statement instantiates a new object of the class namedclassname.

• l := block. This statement creates a closure, just like a lambda expression in Scheme.

• l := send(rcvr, selector, arg1. . .argm). This statement sends a message torcvr. The expres-

sion requests that a method matchingselectorwill execute, and it suppliesarg1 . . . argm as

parameters to the method.

• l := sendvar(rcvr, selectorvar, arg1. . .argm). This statement also sends a message, but

the selector of the method to invoke is read fromselectorvar. This statement supports the

#perform : functionality of Smalltalk, although notice that in Mini-Smalltalk, the only way

to create a selector object is via a literal statement. There is no method in Mini-Smalltalk

to convert a string to a selector. The analysis assumes that the program does not use any

such feature that is present, just as it assumes the program uses no introspective debugging

features.

• l := beval(blockvar, arg1. . .argm). This statement reads a closure from the variable named

blockvarand invokes it.

As a matter of notation, an expression likefoo.bar refers to thebar component offoo. For

example, if

P = Program globals:g classes:c

thenP.globals= g andP.classes= c.

4.5 Concrete Syntax for Methods

The abstract syntax is convenient for mathematics but cumbersome for manipulation of large amounts

of code. A concrete syntax for methods is summarized inFigure 4.2. The concrete syntax is more

convenient for the larger amounts of code given in examples and is closer to the syntax of full

Smalltalk.
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〈method〉 ::= 〈header〉 〈block body〉
〈header〉 ::= 〈unary selector〉

| (〈keyword〉 〈identifier〉) ∗
〈block body〉 ::= (“ |′′ 〈identifier〉 ∗ “ |′′)

(〈statement〉 “ .′′) ∗
“ˆ”? 〈identifier〉

〈statement〉 ::= 〈identifier〉 ← self

| 〈identifier〉 ← 〈identifier〉
| 〈identifier〉 ← 〈literal〉
| 〈identifier〉 ← new 〈identifier〉
| 〈identifier〉 ← “[ ′′(“ : ′′ 〈identifier〉) ∗ 〈block body〉 “] ′′
| 〈identifier〉 ← 〈identifier〉 〈unary selector〉
| 〈identifier〉 ← 〈identifier〉 (〈keyword〉 〈identifier〉) +

| 〈identifier〉 ← 〈identifier〉 perform: 〈identifier〉 (with: 〈identifier〉) ∗
| 〈identifier〉 ← beval 〈identifier〉 (with: 〈identifier〉) ∗

Figure 4.2: Concrete syntax for methods of Mini-Smalltalk

4.6 Valid Programs

A programP is avalid programif it has the following properties:

1. All variable labels are different from each other. This causes no loss of generality because

Mini-Smalltalk is lexically scoped. If two variables have the same label, then one or the other

may be renamed without changing the meaning of the program.

2. P.classesincludes a class UndefinedObject. That class has no instance variables, and it does

have a method with selector #DoIt.

3. P.classesincludes two more classes Block and Selector which have no instance variables.

4. The class hierarchy is acyclic: no non-empty chain ofsuperclassattributes will link a class

back to itself.

5. For all literalslit in literal statements, the class of the literal is included inP.classes. Formally,

lit classes(lit ) ⊆ P.classes
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6. Everysend statement supplies the exact number of arguments that the statement’s specified

selector requires.

7. Every method has the same number of parameters as the method’s selector requires.

Programs in this paper are implicitly assumed to be valid.

4.7 Literals

The precise forms that a literal may take are left unspecified, because those details have no impact on

the overall srtucture of the type inferencer described in this document. A functioninst literal , de-

scribed insection 4.11, is used to instantiate new literals as a program executes. Further constraints

on literals are described insection 5.2.

4.8 Method Specifications and Block Specifications

The semantics include two new structures that refer to elements of the program being executed:

method specifications and block specifications.

A method specificationrefers to a method from the source program. Its attributes are:

• class name, the name of the class to which the method belongs

• selector, the selector of the method

A block specificationrefers to a block from the source program. It specifies a method plus a

navigation path through the statements of the method to find a block at an arbitrary level of nesting.

Its attributes are:

• method, the method specification for the method containing the block.

• statement nums, a sequence of integers corresponding to statement numbers. An empty

sequence designates the main block of the method. A one-element sequence [i1] designates

the block created by thei1-th statement of the main block (which must be a block statement).

A two-element sequence [i1, i2] designates the block created by statementi2 of the block

created in statementi1 of the main block. Likewise for longer sequences.
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Some blocks are nested within others, which gives rise to an ordering among block specifi-

cations: b1 v b2 when b1 is nested withinb2, as described inFigure 4.3. Additionally, block

specifications may be combined in a simple fashion, as described inFigure 4.4andFigure 4.5. Note

that>bs and⊥bs elements have been added in order to complete a lattice; such specifications are

meaningless and are included only to simplify the mathematics.

4.9 Functions Over Syntax

The setall blocks(P) includes all block specifications inP. It includes the blocks of the methods

of P, and it recursively includes any blocks in block statements within the set. The block associated

with block specificationbs in P is designatedblockP(bs).

4.10 Semantic Structures

This section defines semantic data structures used during the execution of a program.

A contourbinds a set of variables. All variable bindings are held in contours in order to support

mutation of variables by the various assignment statements that Mini-Smalltalk includes. A contour

is a finite map from labels to objects. A contour is referred indirectly via acontour id or cid.

There are two distinguished contours:NilCID, the contour of the distinguished objectnil, and

GlobalsCID, the contour used to bind global variables.

An objecthas aclassthat names the object’s class, and anivars cid identifying the contour that

holds the object’s instance variables.

There are three kinds of objects:

• A normal object, which is created by either anew statement or by a literal. The class of such

an object may be any class other than Block or Selector.

• A closure is created by a block statement. A closure’s class is always Block. It has two

attributes other than the usual ones for objects:

– sblockis the block statement in the statement that created the closure.

– outeris the activation (defined below) in which thesblockblock statement was executed.

This information is needed in the semantics of non-local returns and lexically scoped
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BSO-NESTED

(ms, l@l′) v (ms, l)

BSO-TOP

bsv >bs

BSO-BOTTOM

⊥bs v bs

Figure 4.3: Comparison of Block Specifications

BSJ-SYM
bs1 t bs2 = bs3

bs2 t bs1 = bs3

BSJ-TOP

bst >bs = >bs

BSJ-BOTTOM

bst ⊥bs = bs

BSJ-DIFFMETH
ms1 , ms2

(ms1, l1) t (ms2, l2) = >bs

BSJ-SAMEMETH
l = longest prefix(l1, l2)

(ms, l1) t (ms, l2) = (ms, l)

Figure 4.4: Join for Block Specifications

BSM-SYM
bs2 u bs1 = bs3

bs1 u bs2 = bs3

BSM-TOP

bsu >bs = bs

BSM-BOTTOM

bsu ⊥bs = ⊥bs

BSM-DIFFMETH
ms1 , ms2

(ms1, l1) u (ms2, l2) = ⊥bs

BSM-DIFFBLOCK
a , b

(ms, l@[a]@l1) u (ms, l@[b]@l2) = ⊥bs

BSM-NESTED

(ms, l) u (ms, l@l′) = (ms, l@l′)

Figure 4.5: Meet for Block Specifications
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variable access.

• A selector objectis created by a literal statement where the literal specifies a selector. Selector

objects have class Selector and are distinguished by theirlabelandnumArgs. They may have

no instance variables.

Selector objects and closures must always have a contour id that references an empty contour.

The distinguished objectNilObj is an instance of class UndefinedObject. Its contour id is

NilCID, which will always reference an empty contour.

An activation is the current state of execution for one closure or method. It is analogous to a

stack frame in a typical language implementation. An activation has the following attributes:

• block spec, a specification for the block that is executing

• pc, the index of the next statement in the block to execute

• caller, the activation that sent the message that created this activation, orundef

• outer, the activation where temporary variables from one lexical scope outward should be

looked up, orundef if there is no such activation

• receiver, the receiver object to which the message was sent

• params cid, a label for the contour holding this block’s parameters

• temps cid, a label for the contour holding this block’s temporary variables

• caller var, the variable into which the return value should be placed

A configurationis a tuple (activation, contours). The activation is either the currently active

activation or the value HALTED. The special value HALTED means that execution ishalted, either

because execution has completed or because there has been some dynamic error such as sending

a message to an object that does not understand it. In this semantics, execution never becomes

stuck—instead, execution enters the HALTED state and never leaves it.

Thecontourspart of a configuration tuple is a mapping of contour ids to contours. It holds the

current values referred to by all variables.
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Not all objects are sensible to discuss for a particular program and configuration. Avalid object

for a programP and configurationcfgmust follow some additional restrictions. First, itsclassmust

name one of the classes inP. Second, itsivars cid must be among the contours ofcfg. Third,

the domain of the specified contour must be precisely the instance variables of the object’s class in

P, including instance variables that have been inherited. Finally, if the object is a closure, then the

activation of the closure’s block must be a valid activation forP andcfg.

4.11 Semantic Functions

This section defines the low-level functions upon which the semantics is built.

The setall objects(cfg) includes all objects in use in configurationcfg, andall activations(cfg)

is the set of all activations that are accessible in configurationcfg. The two functions are mutually

recursive. The base cases are thatall objects(cfg) includes all objects in the range of any ofcfg’s

contours, andall activations(cfg) includes the current activation ofcfg. The inductive cases are

that all objects(cfg) includes the receiver of any one of the activations inall activations(cfg),

all activations(cfg) includes theouter andcaller of any activation inall activations(cfg), and

finally all activations(cfg) includes the activation of any block object inall objects(cfg).

lookupP(C, sel) looks up a method in a specified class, given the selector for that method. It

returns either a single method orundef. It is defined recursively as follows:

• If sel∈ domain(P.classes[C].methods), thenP.classes[C].methods[sel].

• Otherwise, ifP.classes[C].superclass= undef, thenundef.

• Otherwise,lookupP(P.classes[C].superclass, sel).

The functioninst literal instantiates a literal. Its arguments are a syntactic literal and a config-

urationcfg. It returns an object and a new configuration. The new configuration is identical except

that a new contour has been added; the object’s contour id refers to the new contour. The new object

mustbe a new one; it must use a contour id that is previously unused.

The function

lookup contourP(cfg,act, label,allowparam)
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lookup contour((act, cnt),actv, label,allowparam) =

if label ∈ domain(cnt[(actv.temps cid)])

thenactv.temps cid

else if label ∈ domain(cnt[(actv.params cid)])

then (if allowparamthenactv.params cid elseundef)

else if actv.outer, undef

thenlookup contourP((act, cnt),actv.outer, label, allowparam)

else if label ∈ all instvarsP(actv.rcvr.class)

thenactv.rcvr.ivars cid

else if label ∈ P.globals

thenGlobalsCID

else undef

Figure 4.6: Looking up the contour that binds a variable label. (act, cnt) is the configuration in
which to look up the variable,actv is the activation in which to look up the variable,label is the
variable’s name, andallowparamspecifies whether the function should succeed if the variable binds
to a parameter.allowparamis used to support parameters being read-only.

searches for the contour that binds a specified variable. The last parameter specifies whether con-

tours for parameters should be returned. The function is defined inFigure 4.6.

The functionread var(cfg,actv,label) returns the object that a specified variable holds in a

specified configuration. Note that the activation to read from is specified via theactv parameter.

While the semantics itself will always use the main activation ofcfg, the generalized definition

of read var will later prove useful for stating stronger invariants about variable contents. The

function write var(cfg,label,object) writes a new object into a variable and returns the resulting

configuration. Bothread var andwrite var are defined inFigure 4.7.

The initial configuration forP is denotedstep0(P). Likewise,stepn(P) represents the program

aftern applications ofstepto the initial configuration.

4.12 Initial Configuration

The semantics of Mini-Smalltalk will be described operationally. This section describes the initial

configuration for any particular program, and the next section describes thestep function which

moves one configuration to the next. The initial configuration is a tuple (activation0, contours0)
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cid = lookup contourP(cfg, actv, label, true)
contour= cfg.contours[cid]

contour[label] = read var(cfg,actv, label)

cid = lookup contourP(cfg, actv, label, false)
contour= cfg.contours[cid]

contours′ = contours[cid 7→ contour[label 7→ object]]
cfg′ = (actv, contours′)

cfg′ = write var(cfg, label,object)

Figure 4.7: Reading and writing variables

defined as follows.

Let startmethrepresent the start method of the program:

startmeth= lookupP(UndefinedObject,#DoIt)

Recall that this method exists in any valid program.

There are four elements ofcontours0:

• contours0[NilCID] binds the instance variables ofNilObj. It is an empty contour.

• contours0[GlobalsCID] binds the global variables. It maps each of the labels inP.globalsto

NilObj.

• contours0[cidparams] binds the parameters of the start method. Since the start method has no

parameters, this contour is empty.

• contours0[cidtemps] binds the temporary variables of the start method. It maps each of the

labelsstartmeth.temporariesto NilObj.

The attributes ofactivation0 are as follows:

• block specspecifies the main block ofstartmeth.

• pc = 1

• caller = undef
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• outer= undef

• receiver= NilObj

• params cid = cidparams

• temps cid = cidtemps

• caller var = undef

4.13 Execution

Execution may now be defined, given the preceding definitions. Mini-Smalltalk execution is defined

as an iteration of astepfunction on the initial configuration, thus yielding a sequence of configura-

tions. This section definesstep. Throughout this section, letcfg consist ofactivationandcontours,

and letcfg′ = step(P, cfg). Thus,cfg′ must be defined for an arbitrary programP being analyzed,

and an arbitrary configurationcfg.

Trivially, if activation is HALTED, then thecfg′ = cfg. Otherwise, suppose that thepc of the

current activation is within the bounds of its statement array. That is, letstatementbe the next

statement to execute:

statement = block.statements[activation.pc]

where block = lookup blockP(activation.block spec)

and letactivationinc be the same asactivationexcept thatpchas been incremented, i.e.

activationinc = activation[pc 7→ activation.pc+ 1]

Let cfginc = (activationinc, contours). Then there are the following cases:

• If statementis [l := self], then

cfg′ = write var(cfginc, l, activationinc.receiver)
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• If statementis [l := literal], then let:

(litobj, contourslit ) = inst literal (literal, contours)

Then:

cfg′ = write var((activationinc, contourslit ), l, litobj)

• If statementis [l := l′], then let:

obj = read var(cfg, act, l′)

Then:

cfg′ = write var(cfginc, l,obj)

• If statementis [l := new class], then a new object is to be created. Ifclass is Block or

Selector, thencfg′ is halted; closures and selector objects cannot be created withnew state-

ments. Otherwise, choosenewcidas a label not incontours. Let newcontourbe a contour

mapping the instance variables ofclassto NilObj. Let newobjectbe an object whose class is

classand whose contour isnewcontour. Let

contoursnew = contours[newcid 7→ newcontour]

Then:

cfg′ = write var((activationinc, contoursnew), l,newobject)

• If statementis [l := block], then letdynblockbe a new closure whoseblock specis an exten-

sion ofactivationinc.block specto specify the blockblock, and whoseouter is activationinc.

Then:

cfg′ = write var(cfginc, l,dynblock)

• If statementis [l := send(rcvr, selector,arg1 . . .argm)], then let:

rcvrobj = read var(cfginc, actinc, rcvr)

argobji = read var(cfginc, actinc,argi), ∀i ∈ 1 . . .m

method = lookupP(rcvrobj.class, selector)
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If methodis undef, then the method lookup failed and the machine halts. Otherwise, a new

activationactivationcalled is created for the called method with the following attributes:

block spec = (method, [])

caller = activationinc

outer = undef

receiver = rcvrobj

param cid = newcidp

temp cid = newcidt

caller var = l

wherenewcidp andnewcidt are fresh labels. Letcontourtempsbe a contour mapping each of

method.temporariestoNilObj, and letcontourparamsbe a contour mappingmethod.parametersi

to NilObj for eachi ∈ 1 . . .m. Let contourscalled becontourswith these two contours added:

contourscalled =

contours[newcidp 7→ contourparams, newcidt 7→ contourtemps]

The final configuration is then:

cfg′ = (activationcalled, contourscalled)

• If statementis [l := sendvar(rcvr, lsel,arg1 . . .argm)], thencfg′ is computed as if the state-

ment were asend statement, with the exception that the method selector is:

read var(cfginc, activationinc, lsel)

If the selector is not a selector object, thencfg′ is halted. Otherwise,cfg′ is as described for

send statements.
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• If statementis [l := beval(lb, arg1 . . . argm)], thencfg′ is similar to that resulting from asend

statement. Let:

dynblock= read var(cfginc,actinc, lb)

If dynblockis not actually a block, or if the number of arguments supplied is different than

dynblockrequires, thencfg′ is halted. Otherwise, look up the arguments, just as with a mes-

sage send:

argobji = read var(cfginc,actinc,argi), ∀i ∈ 1 . . .m

Create new labelsnewcidp and newcidt, and new contourscontourparams and contourtemps,

just as with asend statement. The new activation,activation′, will then have the following

attributes:

block = dynblock

contourid = newcid

caller = activationinc

outer = blockvar.outer

receiver = blockvar.outer.receiver

parameters = argobj1...m

pc = 1

caller var = lvar

Then:

cfg′ = (activation′, contours[newcid 7→ contourcalled],heap, globals)

Finally, supposepc is larger than the number of statements in the current activation. The current

block will return some value. Letlret be the name of the variable that is to be returned. There are

two cases:

• Suppose the block returns values from the surrounding method (retFromMethodis true). Then

let:

callact = outermost(activation).caller
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If callact is undef then execution halts. Otherwise, look up the object to return:

retobj = read var(cfginc,actinc, lret)

and write the appropriate variable and return to the calling activation:

cfg′ = write var((callact, contours), cfginc.caller var, retobj)

• Suppose the block returns values from the current block (retFromMethodis false). Let:

retobj = read var(cfginc, actinc, lret)

Then:

cfg′ = write var((actinc.caller, contours),actinc.outer var, retobj)

4.14 Various Semantic Properties

Lemma 4.1 (Semantic Sanity).Mini-Smalltalk semantics has many of the properties one would

expect. Several properties are listed below. For each of these properties,P is any program,n is any

non-negative integer,act ∈ all activations(stepn(P)), andobj ∈ all objects(stepn(P)).

• Only the initial activation has acaller or acaller var that isundef. In particular:

act.caller = undef ⇔ act.caller var = undef

• Thepcof an activation either points within the range of its available statements or points one

past the end:

1 ≤ act.pc ≤ len(lookup block(act.block spec).statements) + 1

• All contours are within thecontoursof the configuration:

obj.cid ∈ domain(stepn(P).contours)

act.params cid ∈ domain(stepn(P).contours)

act.temps cid ∈ domain(stepn(P).contours)
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• The domain ofstepn(P).contours[obj.cid] is precisely the set of instance variables of the

object’s class,obj.class.

• The class ofact.receiveris either the class namedact.block spec.class nameor a descen-

dent of that class.

• If act ∈ all activations(stepn(P)) is an activation for a block other than a method’s main

block, thenact.caller is an activation whose (pc− 1)th statement is abeval statement. Like-

wise, if act is an activation for a method’s main block, then the caller’s (pc− 1)th statement

is asend or sendvar statement.

• If act.outer, undef, thenact.outer.receiver= act.receiver.

• If act.block specis the main block of a method, thenact.outer= undef.

• If act.block specis not the main block of a method, thenact.outer.block specis the block

immediately enclosingact.block spec.

Proof. The proof is straightforward by induction on the number of execution steps. �

The following lemma claims that contour ids are unique, with only one class of exceptions.

The contour id used to reference an object’s instance variables, for example, is never used by a

different object and never used by an activation to refer to parameters or temporary variables. The

contour id used by one activation is never used by another,exceptthat activations differing only

by theirpc are considered the same activation at different stages of execution. This unfortunately

complicated exception allows activations themselves to be immutable, thus simplifying other parts

of the semantics. There is no need, for example, for anactivation id.

Lemma 4.2 (Distinct Contours). In a given configuration, there is no contour id of an object that

is also a contour id for an activation. There is no contour id for two different objects. There is no

contour id for two activations that differ by more than theirpc’s.

Proof. The proof is straightforward by induction on the number of execution steps. Note that when-

ever thestepcreates a new object or activation, it uses fresh contour id’s. �

58



Lemma 4.3 (Send History for Methods).Suppose thatstepn(P) is not halted and that

act ∈ all activations(stepn(P))

act.outermost.sender , undef

Then there is anm< n and ani such that under these definitions:

method = lookup meth(act.outermost.block)

selector = method.selector

cfgm = stepm(P) = (actm, cntm)

statementmi = lookup block(actm.block).statements(i)

statementmi is either asend statement with selectorselector, or asendvar statement. Ifstatementmi

is asendvar statement, then it reads its selector from some variableselectorvarsuch that:

sobj= read var(cfgm, actm, selectorvar)

wheresobj is a selector object forselector. The variable assigned bystatementmi is the variable

recorded inact.outermost.caller var. Furthermore, the receiverrcvr of thesend statement is such

that:

lookupP(read var(cfgm, actm, rcvr).class, selector) = methodn

and each parameter has the value specified in the call statement:

∀k : act.outermost.paramsk = read var(cfgm, actm, argvark)

Proof. The proof is by induction on the number of execution steps. The lemma is trivially correct

for the initial configuration. Suppose it is true forstepn−1(P), and it will be shown forstepn(P).

If the next statement to execute in configurationn − 1 is asend or sendvar statement, then

all activations instepn(P) but one are also activations instepn(P), disregarding changes topc’s.

For the solitary new activation, choosem = n− 1 andi as the current pc fromstepn−1(P), and the
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conditions will clearly be true. For all other activations, choose the samem andi as was chosen for

each activation instepn−1(P).

If the next statement is abeval, then again there is only one new activation. For that activation,

choose the samemandi as was chosen for itsouteractivation. For the other activations, choose the

samemandi as before.

If the next statement is not asend, sendvar, orbeval statement, then the new activations are a

subset of the old ones, and the samem’s andi’s may be chosen for stepn as for stepn−1. Note that

no statement in Mini-Smalltalk may bind a parameter to a different object in an existing activation;

the only way to bind a parameter is to create a new activation. �

Lemma 4.4 (Send History for Blocks).Suppose thatstepn(P) is not halted and that

act ∈ all activations(stepn(P))

act.outer , undef

Then there is anm< n and ani such that under these definitions:

cfgm = stepm(P) = (actm, cntm)

statementmi = actm.block.statements(i)

statementmi is abeval statement. The variableblockvar that it reads its variable from is such that:

blockobj= read var(cfgm, actm, blockvar)

whereblockobj is a closure for blockblock and outer activationact.outer. The variable assigned

by statementmi is act.caller var. Finally, each parameter has the value specified in thebeval

statement:

∀k : act.paramsk = read var(cfgm,actm,argvark)

Proof. The proof is similar to that for the Send History Lemma for Methods. Induct on the number

of execution steps. The lemma is trivially true for the initial configuration. Suppose that it is true in

configurationstepn−1(P), and it will be shown that it is also true instepn(P).
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If the next statement to execute instepn−1(P) is a beval statement, then there is one new

activation instepn(P). If act is that activation, choose the samem andi as was chosen for itsouter

activation. For the other activations, choose the samemandi as before.

If the next statement is asend or sendvar statement, then there is only one new activation, and

act cannot be that one becauseact.outer= undef. For all other activations, choose the samemand

i as instepn−1(P).

If the next statement is neither abeval, send, norsendvar statement, then choose the samem

andi for act as was chosen instepn−1(P). �
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CHAPTER V

DATA-FLOW ANALYSIS IN MINI-SMALLTALK

This chapter continues the formal description ofDDP by describing a general framework for dis-

cussing data flow in Mini-Smalltalk. It defines variables and data-flow judgements, and then it

proves several useful lemmas about these structures.

5.1 Variables

The result of a type inference and the rules of justification for those results are defined in terms of

the static program and its variables; they are statements such as “this variable has this type”. The

correctness of those results is defined in terms of the dynamic behavior of the program; e.g. “this

variable has this type, in this configuration”. Yet, the semantics of the program are given in terms

of labels, not in terms of any concept of “variable”. Thus there is a disconnect between how the

algorithm results are stated, how the correctness criteria are stated, and how the semantics is stated.

This disconnect is bridged byvariables.

5.1.1 Definition

Figure 5.1gives a summary of the four possible kinds of variables in Mini-Smalltalk. The meaning

of each kind should be apparent from its name.

〈variable〉 ::= GlobalVar named:〈label〉
| InstanceVar ofClass:〈label〉 named:〈label〉
| Parameter ofBlock:〈block spec〉 named:〈label〉
| TemporaryVar ofBlock:〈block spec〉 named:〈label〉

Figure 5.1: Variables
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5.1.2 Variables found Dynamically

The semantics has been carefully defined so that every activation is linked to the appropriate block

from the original program. Thus, every variable reference that occurs during execution may be

traced to the associated static variable from the program. To do this, an analyzer begins at an

activation and looks at the temporaries and then the parameters of the activation; if there are any

outer activations, then their temporaries and parameters are checked as well; if the label appears in

none of these activations, then the instance variables are checked. Finally, if none of these locations

binds the variable, the global variables are checked.

The functiondynamic bindings, defined inFigure 5.2, performs this search. Given any con-

figuration and an activation within that configuration,dynamic bindings will find a binding map

describing the variables readable fromact. A binding map is a partial function whose domain in-

cludes a finite number of labels plus the special valuesmethod andblock. The binding map maps

each readable label to a variable describing the variable that will be read from if that label is read

from the specified activation. A binding map also mapsmethod andblock to the method and block

that are executing.

5.1.3 Variables found Statically

Since Mini-Smalltalk uses lexically bound variables, static analysis can predict which variables

will be bound by each variable reference in the program. The functionstatic bindings, defined

in Figure 5.3, maps a block specification to a binding map. It finds variable bindings by tracing

through blocks, then class definitions, and finally the list of globals declared in the program.

A valid variable for a programP is one that is in the static bindings of some block of the

program, i.e.:

∃block spec: ∃l : var = static bindingsP(block spec)[l]

The functionbound statsmay be used to enumerate the statements of a program along with

variable information. bound stats(P) is a set of tuples of statements and binding maps. It is
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act.outer= undef

block spec= act.block spec
meth spec= block spec.meth spec g1 . . .gp = domain(cnt[GlobalsCID])

∀ k ∈ 1 . . . p : gvk = (GlobalVariable named:gk) i1 . . . iq = domain(cnt[act.rcvr.ivars cid])
∀ k ∈ 1 . . .q : ivk = (InstanceVariable ofClass:act.rcvr.classnamed:ik)

p1 . . . pr = domain(cnt[act.params cid])
∀ k ∈ 1 . . . r : pvk = (Parameter ofBlock:block spec named:pk)

t1 . . . ts = domain(cnt[act.temps cid])
∀ k ∈ 1 . . . s : tvk = (TemporaryVar ofBlock:block spec named:tk)

bindings0 = [method→ meth spec, block→ block spec]
bindings1 = bindings0[g1→ gv1, . . . , gp→ gvp]
bindings2 = bindings1[i1→ iv1, . . . , iq→ ivq]

bindings3 = bindings2[p1→ pv1, . . . , pr → pvr ]
bindings= bindings3[t1→ tv1, . . . , ts→ tvs]

bindings= dynamic bindingsP((topact, cnt),act)

act.outer, undef

block spec= act.block spec p1 . . .pr = domain(cnt[act.params cid])
∀ k ∈ 1 . . . r : pvk = (Parameter ofBlock:block spec named:pk)

t1 . . . ts = domain(cnt[act.temps cid])
∀ k ∈ 1 . . . s : tvk = (TemporaryVar ofBlock:block spec named:tk)

bindingsouter = dynamic bindingsP(cfg,act.outer)
bindings0 = bindingsouter[block→ block spec]
bindings1 = bindings0[p1→ pv1, . . . , pr → pvr ]

bindings= bindings1[t1→ tv1, . . . , ts→ tvs]

bindings= dynamic bindingsP((topact, cnt),act)

Figure 5.2: Dynamic Variable Binding
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block spec= BlockSpec methodSpec:method spec statementNums: []
method spec= MethodSpec className:class selector:selector

method= lookup methP(method spec)
method= Method block:block

block= Block parameters:params temporaries:temps statements:stats
P = Program globals:globals classes:classes

g1 . . . gp = globals
∀ k ∈ 1 . . . p : gvk = (GlobalVariable named:gk) i1 . . . iq = all instvarsP(class)

∀ k ∈ 1 . . .q : ivk = (InstanceVariable ofClass:class named:ik)
p1 . . . pr = params ∀ k ∈ 1 . . . r : pvk = (Parameter ofBlock:block spec named:pk)
t1 . . . ts = temps ∀ k ∈ 1 . . . s : tvk = (TemporaryVar ofBlock:block spec named:tk)

bindings0 = [method→ meth spec, block→ block spec]
bindings1 = bindings0[g1→ gv1, . . . , gp→ gvp]
bindings2 = bindings1[i1→ iv1, . . . , iq→ ivq]

bindings3 = bindings2[p1→ pv1, . . . , pr → pvr ]
bindings= bindings3[t1→ tv1, . . . , ts→ tvs]

bindings= static bindingsP(block spec)

block spec= BlockSpec methodSpec:method spec statementNums:snums
snums= append(snums′, snum)

block= lookup blockP(block spec)
block spec′ = BlockSpec methodSpec:method spec statementNums:snums′

block= Block parameters:params temporaries:temps statements:stats
p1 . . . pr = params ∀ k ∈ 1 . . . r : pvk = (Parameter ofBlock:block spec named:pk)
t1 . . . ts = temps ∀ k ∈ 1 . . . s : tvk = (TemporaryVar ofBlock:block spec named:tk)

bindings0 = static bindingsP(block spec′)
bindings1 = bindings0[p1→ pv1, . . . , pr → pvr ]
bindings2 = bindings1[t1→ tv1, . . . , ts→ tvs]
bindings= bindings2[block→ block spec]

bindings= static bindingsP(block spec)

Figure 5.3: Static Variable Binding
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defined as the smallest set satisfying:

bs∈ all blocks(P)

stat∈ blockP(bs).statements

bindings= static bindingsP(bs)

(stat,bindings) ∈ bound stats(P)

5.1.4 Lemmas About Variables

This section proves a few useful properties about variables.

Theorem 1 (Lexical Binding of Mini-Smalltalk). For any programP, for any configuration cfg=

stepn(P), and for any activation act∈ all activations(cfg):

dynamic bindingsP(cfg, act) = static bindingsP(act.block spec)

Proof. The proof is by induction on the number of steps of execution.

In configurationstep0(P), the property is straightforward to show by a case analysis. Consider,

in turn, labels for the temporary variables of the start method, the parameters of the start method,

the global variables, and labels that are none of these. The static and dynamic binding of the labels

are the same in each case.

Suppose then that the property is true instepn(P); it must be shown that it is still true in

stepn+1(P). To avoid triviality, suppose that neither configuration is halted.

If stepn(P) executes asend or sendvar statement to reachstepn+1(P), then there is precisely

one new activation instepn+1(P), disregarding changes topc’s. As with the argument in the initial

configuration, it is straightforward to show that the property holds in this new activation.

Suppose then thatstepn(P) executes abeval statement. Again, there is one new activation, but

now the new activation has anouter activation. Consider any labell. If l is a temporary variable

or parameter of the new activation, then it is straightforward to show that the static and dynamic

bindings are the same. Otherwise, the dynamic binding ofl in the new activation is the same as the

dynamic binding ofl in the new activation’s outer activation. Further, the static binding ofl in the

new activation’s block is the same as the static binding ofl in the activation surrounding the new

activation’s block. By the Semantic Sanity Lemma, the block of the outer activation, must be the
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same as the outer block of the new activation. Thus, by the inductive assumption, the static and

dynamic bindings of the new activation must be the same.

If stepn(P) executes some other statement, or returns from a block, then there are no new acti-

vations instepn+1(P).

Thus in all cases, the property remains true instepn+1(P). �

The following lemma shows that the same contour is never used to hold different variables.

Lemma 5.1 (Unshared Contours).Suppose thatcfg = stepn(P), that act1 andact2 are among

all activations(cfg), and thatl is any label for a variable readable in bothact1 andact2. Then:

lookup contourP(cfg,act1, l, false)

= lookup contourP(cfg, act2, l, false)

⇒ dynamic bindingsP(cfg,act1)[l]

= dynamic bindingsP(cfg,act2)[l]

Proof. The proof is by induction on the number of steps of program execution. In the initial config-

uration, there is only one activation, and the proof is trivial. Suppose, then, that the statement is true

in stepn(P); let us show that it is true instepn+1(P). Assume, to avoid triviality, thatstepn+1(P) is

not halted.

If the statement to execute is asend or sendvar statement, then there is one new activa-

tion in stepn+1(P) that was not present instepn(P). Supposeact1 is the newly created activa-

tion, andact2 is some other activation. The activationact1 has a newly created contour, and

lookup contourP(cfg,act1, l, false) must be that contour becauseact1 has no outer activation.

On the other hand, the contourlookup contourP(cfg, act2, l, false) must have existed instepn(P).

Thus, the two contours cannot be the same, and the desired statement is vacuously true. Likewise if

act2 is the newly created contour. Ifact1 = act2 then the proof is trivial. If neitheract1 nor act2 is

the newly created activation, then the proof is by the inductive assumption.

If the statement to execute is abeval statement, then again there is one new activation cre-

ated and one new contour. Suppose thatact1 is the newly created activation; the other cases
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need no further attention. Iflookup contourP(cfg,act1, l, false) is the newly created contour,

then the statement is vacuously true. If it is some other contour, then it must be the same as

lookup contourP(cfg,act1.outer, l, false). Thus,

dynamic bindingsP(cfg, act1)[l] = dynamic bindingsP(cfg, act1.outer)[l]

Sinceact1.outer is an activation that was present instepn(P), the inductive assumption gives the

desired property.

All other statement types do not create any new activations, and thus the inductive assumption

is already strong enough to give the desired property. �

5.2 Types

A typeis a set of objects. Types inDDP must be in one of the following forms:

• {|C|} is theclass typecontaining all objects whose class is namedC.

• S{|s,m|} is theselector typecontaining selector objects whose label iss and whose number of

arguments ism.

• B{|bs|}ctx is the block typecontaining all closures created by the statement specified bybs,

whose outer activation matches contextctx. Contexts are defined in the next section; types

and contexts are defined with mutual recursion.ctx must not be⊥ctx, the empty context.

• Σts is asum typewherets is a finite set of the above kinds of types. It includes all objects that

are included in any of the elements ofts.

• ⊥ is theempty type, the type including no objects.

• > is theuniversal type, the type including all objects.

Additionally, the notation{|C|}+ is shorthand for a “class cone type” which includes all objects

that are members ofC or a subclass ofC. It is only well-defined in the context of an implicitly

understood programP. Formally,

{|C|}+ = Σ
{{|C′|} | C′ = C or C′ inherits fromC

}
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Notice that subtyping is separated from subclassing inDDP. The type{|Integer|} is not a subtype

of {|Number|}. The type{|Number|} includes only those objects whose class is exactly Number, not

whose class is Number or a subclass of Number. In other words,{|Number|} and {|Number|}+ are

different types.

Types may be compared with thesubtyperelationship defined inFigure 5.4. The relation is

defined such that whenevert1 v t2 and object is a member oft1, thenobject is also a member

of t2. Additionally, types may be combined using thet andu relations defined inFigure 5.5and

Figure 5.6respectively. Assection 5.8shows, these relations define proper join and meet operations.

Further, a review of the definitions is enough to see that if an object is in botht1 andt2, then it is

also int1 u t2.

The functionlit type returns a type for a literal. Its details are left unspecified, butlit type

must be compatible withinst literal : the object created byinst literal (lit ) must be an element of

type lit type(lit ).

lookup∗P(type, selector) is the set of methods that may respond ifselectoris sent to an ob-

ject of typetype. It is the set containing, for each classclassof any object intype, the method

lookupP(class, selector).

5.3 Dynamic Context

In general, better results can be obtained for the type of a message-send expression if the responding

methods are analyzed multiple times, once for each possible combination of argument types. Such

a combination of argument types form acontext. Formally, a context is a function:ctx(act, cfg) is

true whenever the contextctx matches the activationact that is part of configurationcfg.

The largest context used in this paper is>ctx, a context matching any activation. The smallest

context is⊥ctx, a context matching no activation.

The only non-trivial kind of context used in this paper is aparameters context. A parameters

context specifies a block, a type for the method receiver, and a complete function from parameter

variables to types. This function must only map a finite number of parameters into types other than

>. A parameters context is written like this:

<: (bs) self : {|SmallInteger|}, anInteger : {|LargePositiveInteger|} :>
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TO-REFL

t v t

TO-TOP

t v >
TO-BOTTOM

⊥ v t

TO-BLOCK-CTX
ctx1 v ctx2

B{|bs|}ctx1 v B{|bs|}ctx2

TO-BLOCK-CLASS

B{|bs|}ctx v {|Block|}
TO-SELECTOR

S{|s,m|} v {|Selector|}

TO-SUM-R
t′ ∈ ts t v t′

t v Σts

TO-SUM-L
∀t′ ∈ ts : t′ v t

Σtsv t

Figure 5.4: Subtyping

TU-SUB1
t1 v t2

t1 t t2 = t2

TU-SUB2
t2 v t1

t1 t t2 = t1

TU-SIMPLES
t1 @ t2 t2 @ t1

t1 is a class, selector, or block type
t2 is a class, selector, or block type

t1 t t2 = Σ{t1, t2}

TU-MIXED1
t1 is a class, selector, or block type

t2 = Σts t1 @ t2 t2 @ t1
ts′ = remove redundencies(ts∪ {t1})

t1 t t2 = Σts′

TU-MIXED2
t2 is a class, selector, or block type

t1 = Σts t1 @ t2 t2 @ t1
ts′ = remove redundencies(ts∪ {t2})

t1 t t2 = Σts′

TU-SUMS
t1 = Σts1 t2 = Σts2

ts = remove redundecies(ts1 ∪ ts2) t1 @ t2 t2 @ t1

t1 t t2 = Σts

Figure 5.5: Join for Types
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This context is for blockbs. It assigns a type of{|SmallInteger|} to the method receiver, and it assigns

a type of{|LargePositiveInteger|} to theanInteger parameter. It assigns a type of> to all other

parameters.

A parameters context matches an activation in the expected way: the activation must be for a

block that is lexically within the specified block, the activation must have a receiver type that is a

member of the specified type, and each parameter in the activation—including those in lexically

nested scopes—must hold an object that is a member of the type specified by the activation.

Formally, the attributes of a context arectx.bs, ctx.selftype, andctx.paramtypes. For shorthand,

however,ctx[self] refers to the typectx assigns to the receiver. Likewise,ctx[param] refers to the

type assigned toparam.

Contexts may be compared to each other using the rules inFigure 5.7. Wheneverctx1 v ctx2,

ctx1 matches a subset of the activations thatctx2 matches. Two contexts may also be combined or

intersected, according to the rules inFigure 5.8andFigure 5.9. It is proven insection 5.8thatt and

u define proper join and meet operations.

Note that when contexts for unrelated blocks are combined witht, the resulting context is>ctx.

It would be possible to enrich the definition of contexts—by adding “sum contexts” as an analog to

sum types—but since the present analysis never considers such unions, the added complexity would

not be helpful. Intersection viau, on the other hand, does match precisely the contexts matched by

both of two contexts that are intersected.

There are restrictions on the contexts actually used byDDP; seesection 5.7below for details.

5.4 Flow Positions

A flow positiondescribes locations that an object might be bound during program execution. It is

one of the following:

1. [: V var :]ctx, avariable flow position, describing the variablevar in contextctx. ctx may not

be⊥ctx.

2. [: S meth:]ctx, a self flow position, describing the receiver of the methodmethexecuting in

contextctx. ctx may not be⊥ctx.
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TM-SYM
t1 u t2 = t3

t2 u t1 = t3

TM-SUBTYPE
t1 v t2

t1 u t2 = t1

TM-CLASS
C1 , C2

{|C1|} u {|C2|} = ⊥

TM-CLASS-SELECTOR
C , Selector

{|C|} u S{|s,m|} = ⊥

TM-CLASS-BLOCK
C , Block

{|C|} u B{|bs|}ctx = ⊥

TM-SELECTOR1
s1 , s2

S{|s1,m1|} u S{|s2,m2|} = ⊥

TM-SELECTOR2
m1 , m2

S{|s1,m1|} u S{|s2,m2|} = ⊥
TM-SEL-BLOCK

S{|s,m|} u B{|bs|}ctx = ⊥

TM-BLOCK-DIFF
bs1 , bs2

B{|bs1|}ctx1 u B{|bs2|}ctx2 = ⊥

TM-BLOCK-SAME
ctx1 u ctx2 = ctx

B{|bs|}ctx1 u B{|bs|}ctx2 = B{|bs|}ctx

TM-SUM
∀t′ ∈ ts : t′ u t2 = m(t′)

t3 =
⊔

t′∈ts
m(t′)

Σtsu t2 = t3

Figure 5.6: Meet for Types

CO-TOP

ctxv >ctx

CO-BOTTOM

⊥ctx v ctx

CO-PARAMS
ctx1 = <: (bs1) . . . :> ctx2 = <: (bs2) . . . :>

bs1 v bs2 ctx1[self] v ctx2.[self] ∀var : ctx1[var] v ctx2[var]

ctx1 v ctx2

Figure 5.7: Comparison of Contexts

CJ-SYM
ctx2 t ctx1 = ctx3

ctx1 t ctx2 = ctx3

CJ-TOP

ctxt >ctx = >ctx

CJ-BOTTOM

ctxt ⊥ctx = ctx

CJ-DIFF
ctx1 = <: (bs1) . . . :> ctx2 = <: (bs2) . . . :> bs1 t bs2 = >bs

ctx1 t ctx2 = >ctx

CJ-PARAMS
ctx1 = <: (bs1) . . . :> ctx2 = <: (bs2) . . . :> ctx = <: (bs) . . . :>

bs= bs1 t bs2 bs, >bs

ctx1[self] t ctx2[self] = ctx[self] ∀var : ctx1[var] t ctx2[var] = ctx[var]

ctx1 t ctx2 = ctx

Figure 5.8: Join for Contexts
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3. [: Σ fs :], wherefs is a finite set of flow positions of the above kinds, is asum flow position.

No element offsmay be subsumed by another.

4. >fp, theuniversal flow position, which includes all possible flow positions.

5. ⊥fp, theempty flow position, which includes no flow positions.

Some flow positions are completelysubsumedby other flow positions. The rules for deciding

are given inFigure 5.10. Further, flow positions may be combined with the rules inFigure 5.11and

Figure 5.12. It is proven insection 5.8thatt andu define proper join and meet operations for the

lattice of flow positions.

An objectobjectis included in a flow position fin configurationcfg, where

cfg = (act, cnt) = stepn(P)

if all of the following are true:

1. For all global variablesvar that are valid forP,

cnt[GlobalsCID][var.label] = object

⇒ [: V var :]>ctx v f

2. For all valid instance variablesvar and valid objectsobject′ whose class is a subclass of

var.class,

cnt[object′.ivars cid][var.label] = object

⇒ [: V var :]>ctx v f

3. For all act ∈ all activations(cfg), and for all temporary variablesvar that are defined by

act’s block,

cnt[act.temps cid][var.label] = object

⇒ ∃ctx : ctx(act, cfg) ∧ [: V var :]ctx v f
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4. For allact ∈ all activations(cfg), and for all parametersvar that are defined byact’s block,

cnt[act.params cid][var.label] = object

⇒ ∃ctx : ctx(act, cfg) ∧ [: V var :]ctx v f

5. For allact ∈ all activations(cfg),

act.receiver= object

⇒ ∃ctx : ctx(act, cfg) ∧ [: S act.block.method:]ctx v f

For brevity,flowpos(object, cfg) refers to the least flow position that includesobject in cfg. The

calculation offlowposfor a particularobjectandcfg is straightforward: follow the above definition

for an object being in a flow position, and create a union of precisely the required flow positions and

no more.

5.5 Judgements

A data-flow algorithm processesjudgementsabout the behavior of a program. This section describes

the kinds of judgements thatDDP processes.

5.5.1 Type Judgements

A type judgementhas the formvar :ctx type. If ctx specifies a block, that block must enclose the

declaration ofvar. For example, ifvar is a global variable, thenctx may not specify a block and

must be>ctx. Similarly, a context may only assign a type to the receiver if the variable is a parameter

or a local variable; intuitively, there would otherwise there be no singleself in scope.

The correctness criterion for type judgements is straightforward. A type judgementvar :ctx type
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CM-SYM
ctx2 u ctx1 = ctx3

ctx1 u ctx2 = ctx3

CM-TOP

ctxu >ctx = ctx

CM-BOTTOM

ctxu ⊥ctx = ⊥ctx

CM-DIFF
ctx1 = <: (bs1) . . . :> ctx2 = <: (bs2) . . . :>

bs1 u bs2 = ⊥bs

ctx1 u ctx2 = ⊥ctx

CM-PARAMS
ctx1 = <: (bs1) . . . :> ctx2 = <: (bs2) . . . :> ctx = <: (bs) . . . :>

bs1 u bs2 = bs bs, ⊥bs

ctx1[self] u ctx2[self] = ctx[self] ∀var : ctx1[var] u ctx2[var] = ctx[var]

ctx1 u ctx2 = ctx

Figure 5.9: Meet for Contexts

FO-TOP

f v >fp

FO-BOTTOM

⊥fp v f

FO-VAR
ctxv ctx′

[: V var :]ctx v [: V var :]ctx′

FO-METH
ctxv ctx′

[: S meth:]ctx v [: S meth:]ctx′

FO-SUM-L
∀ f ∈ fs : f v f ′

[: Σ fs :] v f ′

FO-SUM-R
∃ f ′ ∈ fs′ : f v f ′

f v [: Σ fs′ :]

Figure 5.10: Comparison of Flow Positions

f1 v f2

f1 t f2 = f2

f2 v f1

f1 t f2 = f1

f1 @ f2 f2 @ f1
f1 is a variable or self flow position
f2 is a variable or self flow position

f1 t f2 = [: Σ { f1, f2} :]

f1 @ f2 f2 @ f1
f1 is a variable or self flow position

f2 = [: Σ fs2 :]
fs = remove redundecies({ f1} ∪ fs2)

f1 t f2 = [: Σ fs :]

f1 @ f2 f2 @ f1
f2 is a variable or self flow position

f1 = [: Σ fs1 :]
fs = remove redundecies({ f2} ∪ fs1)

f1 t f2 = [: Σ fs :]

f1 = [: Σ fs1 :] f2 = [: Σ fs2 :]
fs = remove redundecies(fs1 ∪ fs2)

f1 t f2 = [: Σ fs :]

Figure 5.11: Join for Flow Positions
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FM-SYM
f2 u f1 = f3

f1 u f2 = f3

FM-SUBSUME
f1 v f2

f1 u f2 = f1

FM-VAR
ctx1 u ctx2 = ctx ctx, ⊥ctx

[: V var :]ctx1 u [: V var :]ctx2 = [: V var :]ctx1uctx2

FM-VAR-DIFFCTX
ctx1 u ctx2 = ⊥ctx

[: V var :]ctx1 u [: V var :]ctx2 = ⊥fp

FM-DIFFVAR
var1 , var2

[: V var1 :]ctx1 u [: V var2 :]ctx2 = ⊥fp

FM-SELF
ctx1 u ctx2 = ctx ctx, ⊥ctx

[: S meth:]ctx1 u [: S meth:]ctx2 = [: S meth:]ctx1uctx2

FM-SELF-DIFFCTX
ctx1 u ctx2 = ⊥ctx

[: S meth:]ctx1 u [: S meth:]ctx2 = ⊥fp

FM-SELF-DIFFMETH
meth1 , meth2

[: S meth1 :]ctx1 u [: S meth2 :]ctx2 = ⊥fp

FM-VARSELF

[: V var :]ctx1 u [: S meth:]ctx2 = ⊥fp

FM-SUM
∀ f ′ ∈ fs : f ′ u f2 = m( f ′)

f3 =
⊔

f ′∈fs
m( f ′)

[: Σ fs :] u f2 = f3

Figure 5.12: Meet for Flow Positions
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is correct for configurationcfg if:

∀ act ∈ all activations(cfg) :

ctx(act, cfg) ∧ var = dynlookup varP(cfg,act, var.label)

⇒ read var(cfg,act, var.label) ∈ type

That is, for every activation matched byctxand in whichvar may be read at all, reading the specified

variable gives an object included intype.

5.5.2 Simple Flow Judgements

A simple flow judgementf → f ′ declares that objects in flow positionf may only directly flow

to flow position f ′. By definition, f may be any kind of flow position, but inDDP actually only

processes flow judgements wheref is a simple flow judgement.

No rigorous meaning is given to the correctness of an individual flow judgement, but the intu-

ition is that f → f ′ means thatf ′ holds all of the possible positions to which a value can directly

flow if it starts in positionf . The rigorous definition of correctness compares the flow position of

an object to its flow position after one step of execution. Since a simple flow position cannot, in

general, capture the entire flow position of an object at one configuration,DDP uses sets of flow

judgements to capture all of the possible flow from one configuration to the next.

A setof simple flow judgementsF is correct for configurationcfgprecisely when:

∀object, NilObj : ∀G ⊆ F :

⊥fp @ flowpos(object, cfg) v lhs(G)

⇒ flowpos(object, stepP(cfg)) v (lhs(G) t rhs(G))

where:

lhs(G) =
⊔

f→f ′∈G
f

and:

rhs(G) =
⊔

f→f ′∈G
f ′
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A set of flow judgements is correct for programP, without the qualification, if it is correct in

stepn(P) for all n.

5.5.3 Transitive Flow Judgements

A transitive flow judgementf →∗ f ′ makes a stronger claim than a simple flow judgement: it claims

that objects in flow positionf may only flow to flow positionf ′, even across an arbitrary number of

step’s. A simple flow judgement makes a claim about one step of execution, while a transitive flow

judgement makes a claim about an arbitrary number of steps of execution.

Formally, a set of transitive flow judgementsF is correctfor configurationscfg, stepP(cfg), . . . ,

stepn
P(cfg) whenever:

∀object, NilObj : ∀i ∈ 0 . . .n : ∀ j ∈ i . . .n : ∀G ⊆ F :

⊥fp @ flowpos(object, stepi
P(cfg)) v lhs(G)

⇒ flowpos(object, stepj
P(cfg)) v rhs(G)

A set of transitive flow judgements is correct for programP if it is correct for the configurations

step0(P), . . . ,stepn(P) regardless ofn.

5.5.4 Responders Judgements

A responders judgementis one kind of judgement about the call graph. Roughly, it asks “what is

invoked by a particular send statement?”. It has the following form:

statctx? b
send−−−→ rs

The stat parameter must be asend, sendvar, or beval statement.b is a binding map for that

statement, andctx is a dynamic context. The parameterrs is typically a finite set of tuples (bs,bctx),

each of which has a block specification and a context.rs may also be>r , which signifies that any

method or block might be invoked.

The above judgement is correct for configurationstepn(P) if one of the following is true:

1. rs is>r .
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2. stat is not the statement about to execute instepn(P).

3. b[block] is not the block of the main activation ofstepn(P).

4. ctx does not match the main activation ofstepn(P).

5. There is a tuple (bs,bctx) ∈ rs such that the main activation instepn+1(P) has a block ofbs

and matches contextbctx.

5.5.5 Senders Judgements

A senders judgementis a different form of judgement about the call graph. It asks, roughly, “what

statements invoke this block”. It has the following form:

bsctx
send←−−− ss

bs is the specification of a block or method andctx is a context that filters execution states for

the responding block. The presence ofctx thus allows more specific judgements about the calling

context; it allows the analyzer to limit attention to the invokers of some block under the assumption

that the execution state resulting from the block invocation matches the specified context.

The senders setin a senders judgement,ss in the example above, is typically a set of tuples

(stat,b, cctx), each of which specifies a statement with bindings and a context, butssmay also be

the distinguished value>s. If ss= >s, the judgement declares that any statement might invokebs.

The above judgement is correct for configurationstepn(P) if one of the following is true:

1. ssis>s.

2. The next statement to execute instepn(P) was not asend, sendvar, or beval statement.

3. The main activation ofstepn+1(P) is for a block other thanbs. In this case the senders judge-

ment makes no claim.

4. There is a tuple (stat,b, cctx) such thatcctx matches the main activation ofstepn(P), the

binding map of that activation isb, and the statement about to execute in that activation is

stat. In this case, the sender is among the possibilities the judgement allows.
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Lemma 5.2 (Senders Judgements Across Multiple Steps).Suppose thatbsctx
send←−−− ssis correct

for configurationsstep0(P) . . . stepn(P). Then, for any activationact ∈ all activations(stepn+1(P))

whose block isbs, that is matched byctx, and whosecaller is notundef, there must be anm ≤ n

such thatstepm(P) matches the last criterion of correctness for senders judgements. That is, there

is a tuple (stat,b, cctx) such thatcctxmatches the main activation ofstepm(P), the binding map of

that activation isb, and the statement about to execute in that activation isstat.

Proof. Disregarding changes topc’s, there is at most one new activation in each configuration that

was not present in the previous configuration. Further, if there is a new activation at all, then the new

activation must be the main activation. Therefore, everyact ∈ all activations(stepn+1(P)) must be

the main activation ofstepk(P) for somek ≤ n + 1. Further, since by assumptioncaller , undef,

act cannot be the initial activation created forstep0(P) and thusk > 0. Choosem = k − 1. Since

this m ≤ n, the senders judgement is true forstepm(P), and thus the final clause of the correctness

criteria for senders judgement gives the desired property. �

5.6 Goals

There is one kind ofgoal for each kind of judgement described above. Each goal is a judgement

that has had one portion removed:

• A type goalv :c? tries to find a typet such thatv :c t is correct.

• A flow goal f →? tries to find a flow positionf ′ such thatf → f ′ is correct.

• A transitive flow goalf →∗? tries to find a flow positionf ′ such thatf →∗ f ′ is correct.

• A responders goalstatctx?b
send−−−→ ? tries to find a responders setrs such thatstatctx?b

send−−−→
rs is correct.

• A senders goalbctx
send←−−− ? tries to find a senders setsssuch thatbctx

send←−−− ssis correct.

Every goal thatDDP pursues is of one of the above five forms.
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5.7 Restrictions

Not all elements of the above domains (types, contexts, etc.) are valid for use byDDP. There are

some restrictions, both to ensure that valid elements have a meaningful interpretation, and to keep all

of the domains finite. Some of the restrictions depend on the particular programP being analyzed.

Contexts have the bulk of the restrictions. To be consistent with the program, a context must

only specify non-> types for parameters that are visible inside the context’s block:

ctx[var] , > ⇒ var ∈ static bindingsP(ctx.bs)

Further, not all contexts are usable for all purposes; there are additional restrictions as follow:

• For a type judgementvar :ctx type, eitherctxmust be>ctx, or it must specify a block surround-

ing the one wherevar is declared. For a global variable or instance variable, there is no such

block and thus the context must be>ctx. For a block parameter or local variable, the context

may specify the block where the variable is declared, or it may specify a block enclosing that

block.

• A variable flow position [:V var :]ctx has exactly the same restrictions.

• For a self flow position [:S meth:]ctx, eitherctx must be>ctx, or it must specify the main

block ofmeth.

• For a block typeB{|blk|}ctx, eitherctx must be>ctx, or it must specify a block that isblk itself

or a block that surroundsblk.

• The context for a responders judgement is either>ctx, or it specifies a block that is the block

of the binding map of the judgement or that lexically encloses that block.

• The context in a senders judgement is either>ctx, or it specifies a block that is the block of

the judgement or that lexically encloses that block.

If a context is invalid according to either of the criteria above, then it can be broadened until it

meets the necessary restrictions. The notationdctxe denotes a context that is less restrictive thanctx

and that is valid for the intended purpose. In short, it is the smallest contextctx′ such thatctx′ is

valid andctxv ctx′.

81



In detail,dctxe is computed as follows. First, ifctx is >ctx or ⊥ctx, thendctxe = ctx. Otherwise,

the block specification ofdctxe is the innermost block specification encompassing the block ofctx

that meets the restrictions on block context; if there is no such block specification thendctxe = >ctx.

The non-> parameter restrictions ofdctxe are precisely those ofctx where the variable is visible

from the chosen block specification.

As another restriction, only classes, variables, methods, etc. in the program may be specified in

the above domains. For example, in a type judgementv :c t, the variablev must be a variable inP.

Finally, the recursion between block types and contexts must be restricted in some way in order

to ensure that a finite number of block types are possible. There are various approaches possible,

as Agesen has studied [2]. The present work uses a simple approach, because it is expected that

precise analysis of blocks that access themselves via parameters is not frequently needed for precise

analysis of Smalltalk code. The approach used is as follows: the context associated with a block

may not mention, either directly or indirectly, another block type for the same block. That is, while

the context may mention a block type for a different block, the context forthat block type may not

mention a block type for either of the two blocks. And so on, recursively. Since there are only

finitely many blocks available in a particular program, there are only a finite number of possible

block types that meet this restriction. The notationdblkte refers to the block typeblkt after having

enough contexts replaced by>ctx that the block type is valid.

5.8 Lattice Properties

This section proves that block specifications, types, contexts, and flow positions all form lattices

with their respectivev operators, and that the respectivet andu relations defined earlier are correct

join and meet operations for these lattices.

The proofs go as follows for each lattice. First, the ordering relation is shown to be reflexive,

transitive, and anti-symmetric, and thus to be true partial orderings appropriate for a lattice. Second,

the meet and join relations are shown to be complete. Third, thet andu relations are shown to

give least upper bound and greatest lower bounds. It follows from these properties that the given

set and ordering determine a lattice, and that the definedt andu relations are in fact thet andu
operations of those lattices.
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Lemma 5.3 (Comparison of Block Specifications is Reflexive).For any block specificationbs,

bsv bs.

Proof. Straightforward case analysis ofbsgives the desired property. �

Lemma 5.4 (Comparison of Block Specifications is Transitive).For any block specificationsbs1,

bs1, andbs1, wherebs1 v bs2 andbs2 v bs3, bs1 v bs3.

Proof. The only non-trivial case is when none ofbs1, bs2, andbs3 are either>bs or⊥bs. Let:

bs1 = (ms1, l1)

bs2 = (ms2, l2)

bs3 = (ms3, l3)

Rule BSO-NESTED must have been used, so that all of:

ms1 = ms2

l1 = l2@l′

ms2 = ms3

l2 = l3@l′′

for somel′ andl′′. It is thus clear thatms1 = ms3 and thatl1 = l3@(l′@l′′), and thusbs1 v bs3. �

Lemma 5.5 (Comparison of Block Specifications is Antisymmetric).For any block specifica-

tionsbs1 andbs2, if bs1 v bs2 andbs2 v bs1 , thenbs1 = bs2.

Proof. The proof is a case analysis ofbs1. If bs1 is >bs, then BSO-TOP must have been used to

justify bs1 v bs2, and thusbs2 is>bs. Likewise for the case wherebs1 is⊥bs.

If bs1 = (ms, l), then BSO-NESTED must have been used to justifybs1 v bs2 andbs2 v bs1.

The only way this can be is ifbs2 = (ms, l@l′) wherel′ = []. Thusbs1 = bs2. �

Lemma 5.6 (Join of Block Specifications is Complete).For any block specificationsbs1 andbs2,

there is abst such thatbs1 t bs2 = bst.
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Proof. The proof is by cases. Ifbs1 or bs2 is >bs, then one may choosebst = >bs. Similarly, if

bs1 = ⊥bs then one may choosebst = bs2, and ifbs2 = ⊥bs then one may choosebst = bs1. That

leaves the case that neitherbs1 nor bs2 is >bs or ⊥bs. In that case, one must consider whether the

methods of the two block specifications are the same. If they are the same, then BSJSAMEMETH

may be used to find a satisfactorybst, and if they are different then one may choose>bs. �

Lemma 5.7 (Meet of Block Specifications is Complete).For any block specificationsbs1 andbs2,

there is absu such thatbs1 u bs2 = bst.

Proof. The proof is by cases, just as with the proof thatt is complete. �

Lemma 5.8 (Join of Block Specifications is Correct).If bs1 t bs2 = bst, thenbst is the least

upper bound ofbs1 andbs2. That is,bs1 v bst andbs2 v bst, and for any otherbs3 for which

bs1 v bs3 andbs2 v bs3, it must be thatbst v bs3.

Proof. To show the first part of the lemma, thatbst is an upper bound ofbs1 andbs2, induct on the

derivation thatbs1 t bs2 = bs3 and note that, in each case, one of the ordering rules will clearly

apply.

To show thatbst is also theleastupper bound ofbs1 andbs2, induct on the derivation that

bs1t bs2 = bs3 and consider any other upper boundbs3. It must be shown thatbst v bs3. The only

non-trivial case is if the derivation finishes with BSJ-SAMEMETH. In that case, let:

bs1 = (ms, l1)

bs2 = (ms, l2)

bst = (ms, lt)

lt = longest prefix(l1, l2)

If bs3 = >bs then the result is trivial, and ifbs3 = ⊥bs then there is a contradiction becausebs3

cannot be an upper bound ofbs1 or bs2. Suppose, then, that:

bs3 = (ms, l3)

84



The justification thatbs1 v bs3 must use BSO-NESTED, and thusl1 = l3@l′ for somel′. Likewise,

l2 = l3@l′′ for somel′′. Thus,l3 is a prefix of bothl1 andl2, and thus also a prefix oflt, which is

the longest common prefix ofl1 andl2. Thus by BSO-NESTED,bst v bs3. �

Lemma 5.9 (Meet of Block Specifications is Correct).Whenbs1 u bs2 = bsu, bsu is the greatest

lower bound ofbs1 andbs2. That is,bsu v bs1 andbsu v bs2, and for any otherbs3 for which

bs3 v bs1 andbs3 v bs2, it must be thatbs3 v bsu.

Proof. It is straightforward to show the first part of the lemma, thatbsu v bs1 and bsu v bs2.

Simply induct on the derivation thatbs1 u bs2 = bsu.

To show the second part, induct on the derivation thatbs1 u bs2 = bsu, and letbs3 be such that

bs3 v bs1 andbs3 v bs2. It must be shown thatbs3 v bsu. Consider each possible last step of the

derivation thatbs1 u bs2 = bsu:

• BSM-SYM. By the inductive assumption,bs3 v bsu.

• BSM-TOP. By BSO-TOP,bs3 v bsu = >bs.

• BSM-BOTTOM. Sincebs3 v bs2 = ⊥bs, it must be thatbs3 = ⊥bs. By BSO-BOTTOM,

bs3 v bsu.

• BSM-DIFFMETH. Letbs1 = (ms1, l1) andbs1 = (ms2, l2). If bs3 = ⊥bs then the proof is

trivial, and if bs3 = >bs then it cannot be thatbs3 v bs1. Thus supposebs3 = (ms3, l3).

To justify thatbs3 v bs1, rule BSO-NESTED must be used, and thusms3 = ms1. The same

argument applies withbs2, however, and thus alsoms3 = ms2. This contradicts the assumption

of BSM-DIFFMETH, and thus the case is impossible.

• BSM-DIFFBLOCK. Again, the only non-trivial case is ifbs3 = (ms3, l3) for somems3 and

l3. Let:

bs1 = (ms, l@[a]@l1)

bs2 = (ms, l@[b]@l2)

a , b
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Rule BSO-NESTED must be used to justify bothbs3 v bs1 andbs3 v bs2, and thusms3 = ms.

Further, it must be that both:

l3 = l@[a]@l1@l′

l3 = l@[b]@l2@l′

However, this is clearly impossible.

• BSM-NESTED. Again, the only non-trivial case is ifbs3 = (ms3, l3) for somems3 and l3.

Let:

bs1 = (ms, l)

bs2 = (ms, l@l′)

bsu = (ms, l@l′)

Rule BSO-NESTED must be used to justifybs3 v bs1 andbs3 v bs2, and thusms3 = ms.

Further,l3 = l@l′@l′′. Thus, by Rule BSM-NESTED,bs3 v bsu.

�

Lemma 5.10 (Reflexive Property for Comparison of Types).For any typet, t v t.

Proof. Justification rule TO-REFL gives this property directly. �

Lemma 5.11 (Comparison of Contexts is Reflexive).For any contextctx, it must be thatctxv ctx.

Proof. If ctx = >ctx, then CO-TOP gives this property. Likewise, ifctx = ⊥ctx, then CO-BOTTOM

gives the property. Ifctx is a parameters context, then CO-PARAMS gives the desired property.�

Lemma 5.12 (Comparison of Types and Contexts is Transitive).For any typest1, t2, and t3,

wheret1 v t2, and t2 v t3, it must be thatt1 v t3. For any contextsctx1, ctx2, andctx3, where

ctx1 v ctx2 andctx2 v ctx3, it must be thatctx1 v ctx3.
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Proof. The proof is by induction on the depth of the deepest justification thatt1 v t2, t2 v t3,

ctx1 v ctx2, or ctx2 v ctx3.

First, consider the transitivity of types. One of the following rules must be used to justify that

t1 v t2:

• TO-REFL. Thent1 = t2. Since, by assumption,t2 v t3, it must also be thatt1 v t3.

• TO-TOP. Thent2 = >. It must also be thatt3 = >, because otherwise it is not possible for

t2 v t3. By TO-TOP again,t1 v t3.

• TO-BOTTOM. Thent1 = ⊥. By TO-BOTTOM again,t1 v t3 regardless of whatt3 is.

• TO-BLOCK-CTX. Thent1 = B{|bs|}ctx1 andt2 = B{|bs|}ctx2, wherectx1 v ctx2. Now consider

each way that it might have been justified thatt2 v t3:

– TO-TOP. Thent3 = >, and by TO-TOP,t1 v t3.

– TO-BLOCK-CTX. Thent3 = B{|bs|}ctx3 wherectx2 v ctx3. The derivations thatctx1 v
ctx2 and thatctx2 v ctx3 must be less deep than the derivations thatt1 v t2 and that

t2 v t3. Thus the inductive assumption may be used, andctx1 v ctx3. Thus by

TO-BLOCK-CTX, t1 v t3.

– TO-BLOCK-CLASS. Then TO-BLOCK-CLASS also justifiest1 v t3.

– TO-SUM-R. Thent3 is a sum type that has at′ among its elements such thatt2 v t′. By

the inductive assumption, it is also true thatt1 v t′. Thus by TO-SUM-R,t1 v t3.

• TO-BLOCK-CLASS.t1 is a block type andt2 is the class type for class Block. Consider each

way to justifyt2 v t3:

– TO-REFL. Thent3 is also the class type for Block and the desired result is given by

TO-BLOCK-CLASS.

– TO-TOP. Thent3 = >, and TO-TOP gives the desired result.

– TO-SUM-R. Then the inductive assumption gives the desired result.

• TO-SELECTOR. The proof parallels the one for TO-BLOCK-CLASS.
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• TO-SUM-R. t2 is a sum type, and there is some elementt′ of the sum for whicht1 v t′.

Consider each way that it may have been justified thatt2 v t3:

– TO-REFL. Trivial.

– TO-TOP. Trivial.

– TO-SUM-R. Thent3 is a sum type with an elementt′′ such thatt2 v t′′. To justify that

t2 v t′′, one must use TO-SUM-L. Thus, all elements oft2 are subtypes oft′′, including

t′. By the inductive assumption,t1 v t′′, and thus by TO-SUM-R,t1 v t3.

– TO-SUM-L. All elements oft2 are subtypes oft3, including t′. By the inductive as-

sumption,t1 v t3.

• TO-SUM-L. t1 is a sum type, and every element of the sum is a subtype oft2. Each element

of t1 cannot be a sum type, and so the justification that each element is a subtype oft2 cannot

use TO-SUM-L and must instead use one of the above rules. No matter which rule is used,

the argument from above may be repeated to show that the element is also a subtype oft3.

Thus the condition is met to use TO-SUM-L to justifyt1 v t3.

Now consider transitivity of contexts. One of the following rules must be used to justify that

ctx1 v ctx2:

• CO-TOP. Thenctx2 = >ctx. It most also be thatctx3 = >ctx, and thus clearlyctx1 v ctx3.

• CO-BOTTOM. Thenctx1 = ⊥ctx. Then by CO-BOTTOM,ctx1 v ctx3.

• CO-PARAMS. Thenctx1 andctx2 are parameters contexts where the types ofctx1 are sub-

types of the corresponding types ofctx2. If one justifiesctx2 v ctx3 with CO-TOP then the

result is trivial, so suppose one uses CO-PARAMS. Then the types ofctx2 are subtypes of the

corresponding types ofctx3. By the inductive assumption, the types ofctx1 are also less than

the corresponding types ofctx3, and thus CO-PARAMS justifies thatctx1 v ctx3.

�

Lemma 5.13 (Comparison of Types and Contexts is Antisymmetric).Let t1 andt2 be any types,

andctx1 andctx2 be any contexts. Ift1 v t2 andt2 v t1 thent1 = t2. If ctx1 v ctx2 andctx2 v ctx1
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thenctx1 = ctx2 .

Proof. The proof is by induction on the depth of the deepest inference tree used to infer thatt1 v t2,

t2 v t1, ctx1 v ctx2, or ctx2 v ctx1.

Consider in turn each way that one might justifyt1 v t2:

• TO-REFL. It must be thatt1 = t2 in order to use this rule at all.

• TO-TOP. Thust2 = >. The only ways to justify that> v t1 are TO-REFL, TO-TOP, and

TO-SUM-R. If TO-REFL or TO-TOP is used the result is trivial. TO-SUM-R cannot in fact

be used because the assumptions cannot be met: There is no way for the sum to include a type

that is a supertype of>.

• TO-BOTTOM. Likewise.

• TO-BLOCK-CTX. It must be thatt1 = B{|bs|}bctx1 andt2 = B{|bs|}bctx2 for somebs, bctx1, and

bctx2. To justify thatt2 v t1, either TO-REFL is used, or TO-BLOCK-CTX is used again. If

TO-REFL is used then the result is trivial. If TO-BLOCK-CTX is used, then it must be that

bothbctx1 v bctx2 andbctx2 v bctx1. By the inductive hypothesis,bctx1 = bctx2 and thus

alsot1 = t2.

• TO-BLOCK-CLASS. In this case, there is no rule that can justifyt2 v t1.

• TO-SELECTOR. Likewise.

• TO-SUM-R. It must be thatt2 = Σts2 and that there is at′2 ∈ ts2 such thatt1 v t′2. To justify

t2 v t1, one of these rules must be used: TO-REFL, TO-TOP, TO-SUM-R, or TO-SUM-L.

TO-REFL is trivial, and, as described above, TO-TOP is impossible. In fact, as described

below, TO-SUM-L and TO-SUM-R are impossible as well.

If TO-SUM-R is used, thent1 = Σts1 and there is at′1 ∈ ts1 such thatt2 v t′1. The only way

to justify t2 v t′1 is with TO-SUM-L, which means that every element ofts2, includingt′2, is

a subtype oft′1. By the inductive hypothesis,t′1 = t′2, and thus every element ofts2 is also a

subtype oft′2. But thent2 is a malformed sum type.
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If TO-SUM-L is used, then every element ofts2 is a subtype oft1. By the transitivity property,

every element ofts2 must also be a subtype oft′2. But thent2 is, again, a malformed sum type.

• TO-SUM-L. It must be thatt1 = Σts1 and that all elements ofts1 are subtypes oft2. To

justify that t2 v t1, one of these rules must be used: TO-REFL, TO-BOTTOM, TO-SUM-R,

or TO-SUM-L. TO-REFL is trivial. TO-BOTTOM is actually impossible because no sum

type can be a subtype of⊥. TO-SUM-R is symmetric to a case already discussed.

That leaves TO-SUM-L to justifyt2 v t1. It must be thatt2 = Σts2 and every element ofts2

is a subtype oft1. To justify that each of these elements is a subtype oft1, TO-SUM-R must

be used. Thus for each element ofts2, there must be an element ofts1 that it is a subtype

of. Similarly, there must be an element ofts1 that is the supertype of each element ofts2.

Consider any elementt1a ∈ ts1, an elementt2a ∈ ts2 such thatt1a v t2a, and an element

t1b ∈ ts1 such thatt2a v t1b. By transitivity, t1a v t1b. Sincet1 is a well-formed sum type,

it must be thatt1a = t1b. By the inductive hypothesis, it must be thatt1a = t2a. Since this

argument holds for all elements ofts1 andts2, it must be that each element of each set has an

equal element in the other set, and thus the two sets must be equal. Thust1 = t2 as well.

�

Lemma 5.14 (Join of Types is Complete).For any typest1 and t2, there is a typett such that

t1 t t2 = tt.

Proof. The proof is straightforward by cases. Either one type is a subtype of the other, or if not,

each type is or is not a sum type. �

Lemma 5.15 (Join of Contexts is Complete).For any contextsctx1 andctx2, there is a context

ctxt such thatctx1 t ctx2 = ctxt.

Proof. The proof by cases is straightforward. �

Lemma 5.16 (Meet of Types and Contexts is Complete).For any typest1 and t2, there is a

type tt such thatt1 u t2 = tt. For any contextsctx1 andctx2, there is a contextctxt such that

ctx1 u ctx2 = ctxt.
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Proof. The proof is by induction on the construction oft1 andt2 or ctx1 andctx2. Each type is>,⊥,

a class type, a selector type, a block type, or a sum type. In each case, either one type is a subtype

of the other, or one of the rules must apply. Note that ift1 andt2 are blocks, then it will be possible

to satisfy the assumption in TM-BLOCK-SAME due to the inductive assumption. Likewise for

TM-SUM. Similarly, each context is>ctx, ⊥ctx, or a parameters context. Likewise, note that the

assumptions in CM-PARAMS are satisfiable due to the inductive assumption. �

Lemma 5.17 (Join of Types is Correct).If t1 t t2 = tt, tt is the least upper bound oft1 andt2 in

the types lattice. That is,t1 v tt, t2 v tt, and for anyt′t such thatt1 v t′t andt2 v t′t, tt v t′t.

Proof. To show thatt1 v tt andt2 v tt, one can do a straightforward case analysis on the derivation

of t1 t t2 = tt. Thust gives upper bounds.

To show thattt is theleastupper bound, lett′t be any other upper bound, and consider each way

that it may be derived thatt1 t t2 = tt.

• TU-SUB1 and TU-SUB2. Trivial.

• TU-SIMPLES. By TO-SUM-L, it must be thattt v t′t; the two elements oftt aret1 andt2

which are assumed to be subtypes oft′t.

• TU-MIXED1. t2 andtt must be sum types, and every component type oftt must also be a

component oft2 or must be exactlyt1. Each of these types must be a subtype oft′t, and thus

again TO-SUM-L shows thattt v t′t.

• TU-MIXED2. Likewise.

• TU-SUMS. t1, t2, andtt are all sum types, and every component oftt is a component of

eithert1 or t2. Thus TO-SUM-L again shows thattt v t′t.

Lemma 5.18 (Join of Contexts is Correct).For any three contextsctx1, ctx2, andctxt, where

ctx1 t ctx2 = ctxt, ctxt is the least upper bound ofctx1 andctx2.

First show thatctxt is an upper bound, induct on the derivation ofctx1tctx2 = ctxt, and observe

that in each possible case, one of the ordering rules will apply.
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To show thatctxt is not only an upper bound, but the least upper bound, induct again on the

derivation ofctx1 t ctx2 = ctxt, consider each possible rule that might be used in the final step of

the derivation, and consider any other upper boundctx′t. It must be shown thatctxt v ctx′t.

• CJ-SYM. The inductive assumption directly gives the desired result.

• CJ-TOP. Every context is ordered before>ctx.

• CJ-BOTTOM. ctx′t can only be⊥ctx; otherwise there is no way to justify ordering it before

⊥ctx. Thus by CO-BOTTOM,ctxt v ctx′t.

• CJ-DIFF. If ctx′t is >ctx, then the proof is trivial. It cannot be⊥ctx. If ctx′t is a parameters

context, then a contradiction arises, as follows. The block specification ofctx′t must be or-

dered after both the block specification ofctx1 and the block specification ofctx2. Since the

join operation for block specifications gives least upper bounds, the only context this could

be is>ctx. However, the block specification of a parameters context can not be>ctx.

• CJ-PARAMS. Ifctx′u is>ctx, then the proof is trivial. Further,ctx′u cannot be⊥ctx. The only

remaining case is thatctx′u = <: (bs3) . . . :>. It must be that all of:

bs1 v bs3

bs2 v bs3

ctx1[self] v ctxt[self]

ctx2[self] v ctxt[self]

∀var : ctx1[var] v ctx′t[var]

∀var : ctx2[var] v ctx′t[var]

Since meet is correct for block specifications,bs1tbs2 v bs3. By the inductive assumption,

both:

ctx1[self] t ctx2[self] v ctx′t[self]

∀var : ctx1[var] t ctx2[var] v ctx′t[var]
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Thus all of the conditions are met to use rule CO-PARAMS, andctxt v ctx′t.

�

Lemma 5.19 (Meet of Types and Contexts is Correct).For any typest1, t2, andtu, wheret1u t2 =

tu, tu is the greatest lower bound oft1 andt2 in the types lattice. That is,tu v t1, tu v t2, and for

any t′u such thatt′u v t1 andt′u v t2, t′u v tu. Further, for any contextsctx1, ctx2, andctxu where

ctx1 u ctx2 = ctxu, ctxu is the least upper bound ofctx1 andctx2.

Proof. First show thattu andctxu are lower bounds. It suffices to perform a straightforward induc-

tion on the derivation oft1 u t2 = tu or ctx1 u ctx2 = ctxu. The only non-trivial case is TM-SUM.

One can show, by a tedious case analysis, that whenever two types are a subtype of a third type, their

union is also a subtype of the third type. By extension, if any finite number of types is a subtype of

t, then so is their union.

Thusu gives lower bounds.

To show thattu andctxu aregreatestlower bounds, lett′u andctx′u be any other lower bounds.

It must be shown thatt′u v tu and thatctx′u v ctxu.

First, consider each way that it may be derived thatt1 u t2 = tu.

• TM-SYM. The inductive assumption gives the desired result.

• TM-SUBTYPE. Sincet′u is a lower bound, it must be thatt′u v t1 = tu.

• TM-CLASS. A case analysis on the different kinds of types shows thatt′u = ⊥. Since this

argument is used repeatedly, this simple case analysis will be listed in full:

– If t′u is>, then there is a contradiction: there is no way to justifyt′u v t1.

– If t′u is a class type, then it must be a class type for the same class ast1 and for the same

class ast2. However, by an assumption of TM-CLASS, these classes are different.

– If t′u is a selector type, then the class oft1 and the class oft2 must be Selector. However,

these classes cannot be the same.

– If t′u is a block type, then likewise for class Block.
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– If t′u is a sum type, then all of its elements must be subtypes oft1 andt2. However, its

elements must be class, selector, or block types, and as argued above there are no such

types available that are subtypes of botht1 andt2.

Sincet′u = ⊥ = tu, t′u v tu.

• TM-CLASS-SELECTOR. Likewise.

• TM-CLASS-BLOCK. Likewise.

• TM-SELECTOR1. Likewise.

• TM-SELECTOR2. Likewise.

• TM-SEL-BLOCK. Likewise.

• TM-BLOCK-DIFF. Likewise.

• TM-BLOCK-SAME. If t′u = ⊥, then the desired result is clear. Otherwise,t′u must be a block

type. Its block specification must be the same as that fort1 and t2, and its context must be

subsumed by both the context oft1 and the context oft2. By the inductive assumption, any

such context must be subsumed by the meet of these two contexts, and the context oftu is in

fact the meet of these two contexts. Thus, by TO-BLOCK,t′u v tu.

• TM-SUM. t1 = Σts. Sincet′u v t1, there must be some elementt′ ∈ ts such thatt′u v t′. By

the inductive assumption,t′u v t′ u t2. Sincetu is the join oft′ u t2 with some other types,

and, since joins give upper bounds, it must also be thatt′u v tu.

Now consider each way to derivectx1 u ctx2 = ctxu.

• CM-SYM. By the inductive assumption,ctx′u v ctxu.

• CM-TOP. Thenctx2 = >ctx andctxu = ctx1. By assumption,ctx′u v ctx1 = ctxu.

• CM-BOTTOM. It must be thatctx′u = ⊥ctx. Thus by CO-BOTTOM,ctx′u v ctxu.

• CM-DIFF. If ctx′u is ⊥ctx, then the proof is trivial, andctx′u cannot be>ctx. If it is a param-

eters context, a contradiction arises. Its block specification must be a subtype of the block
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specifications ofctx1 andctx2, and its block specification must not be⊥bs. By the inductive

assumption, however, and since meet for block specifications gives the greatest lower bound,

its block specification can only be⊥bs.

• CM-PARAMS. If ctx′u is ⊥ctx, then the proof is trivial, and it cannot be>ctx. Thus, suppose

ctx′u = <: (bs3) . . . :>. It must be that all of:

bs3 v bs1

bs3 v bs2

ctx′u[self] v ctx1[self]

ctx′u[self] v ctx2[self]

∀var : ctx′u[var] v ctx1[var]

∀var : ctx′u[var] v ctx2[var]

Since meet is correct for block specifications,bs3 v bs1ubs2. By the inductive assumption,

both:

ctx′u[self] v ctx1[self] u ctx2[self]

∀var : ctx′u[var] v ctx1[var] u ctx2[var]

Thus all of the conditions are met to use rule CO-PARAMS, andctx′u v ctxu.

�

Lemma 5.20 (Comparison of Flow Positions is Reflexive).For any flow positionf , f v f .

Proof. For each kind of flow positionf may be, there is a rule showing thatf v f . �

Lemma 5.21 (Comparison of Flow Positions is Transitive).For any three flow positionsf1, f2,

and f3, where f1 v f2 and f2 v f3, it must be thatf1 v f3.

Proof. Consider each way that it may be derived thatf1 v f2:
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• FO-TOP. Thenf2 = >fp. It must also be thatf3 = >fp, because otherwise it is impossible that

f2 v f3. Thus by FO-TOP,f1 v f3.

• FO-BOTTOM. Thenf1 = ⊥fp. By FO-BOTTOM again,f1 v f3.

• FO-VAR. Then:

f1 = [: V var :]ctx1

f2 = [: V var :]ctx2

ctx1 v ctx2

Consider each possible way to justify thatf2 v f3:

– FO-TOP. Thenf3 = >fp. By FO-TOP,f1 v f3.

– FO-VAR. Then f3 = [: V var :]ctx3 wherectx2 v ctx3. Since comparison of contexts is

transitive, it must be thatctx1 v ctx3. Thus by FO-VAR,f1 v f3.

– FO-SUM-R Thenf3 = [: Σ fs3 :] and there is somef ′3 ∈ fs3 such thatf2 v f ′3. One of

the above rules must have been used to justifyf2 v f ′3, and thus by the arguments given

above it must be thatf1 v f ′3. Thus, by FO-SUM-R,f1 v f3.

• FO-METH. Likewise.

• FO-SUM-L. Thenf1 = [: Σ fs1 :] for somefs1, and for everyf ′1 ∈ fs1, it must be thatf ′1 v f2.

If f2 is not a sum flow position, then one of the above arguments will show that for each

f ′1 ∈ fs1, f ′1 v f3, and thus by FO-SUM-L,f1 v f3.

Thus, supposef2 = [: Σ fs2 :]. Consider eachf ′1 ∈ fs1 in turn. To justify that f ′1 v f2, rule

FO-SUM-R must have been used. Thus there must be somef ′2 ∈ fs2 such thatf ′1 v f ′2. Now,

consider each way it may have been justified thatf2 v f3:

– FO-TOP. Thenf3 = >fp, and f ′1 v f3.

– FO-SUM-L. Then every element offs2, including f ′2, is subsumed byf3. Thus, by one

of the above arguments,f ′1 v f3.
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– FO-SUM-R. Thenf3 = [: Σ fs3 :], and there must be somef ′3 ∈ fs3 such thatf2 v f ′3.

To justify that f2 v f ′3, it is only possible to use FO-SUM-L. Thus, there must be a

f ′2 ∈ fs2 such thatf ′2 v f ′3. By one of the above arguments, it must also be thatf ′1 v f ′3.

By FO-SUM-R, it must also be thatf ′1 v f3.

In all cases,f ′1 v f3. Since this argument holds for allf ′1 ∈ fs1, one may use FO-SUM-L to

show thatf1 v f3.

• FO-SUM-R. Thenf2 = [: Σ fs2 :] and there is somef ′2 ∈ fs2 such thatf1 v f ′2. Since f2 v f3,

it is straightforward to show thatf ′2 v f3. Thus, by one of the arguments given previously, it

must also be thatf1 v f3.

�

Lemma 5.22 (Comparison of Flow Positions is Antisymmetric).For any flow positionsf1 and

f2 where bothf1 v f2 and f2 v f1, it must be thatf1 = f2.

Proof. The proof directly parallels the proof of antisymmetric comparison of types and contexts.

�

Lemma 5.23 (Join of Flow Positions is Complete).For any flow positionsf1 and f2, there is a

flow positionft such thatf1 t f2 = ft.

Proof. The proof by cases is straightforward. �

Lemma 5.24 (Meet of Flow Positions is Complete).If f1 and f2 are any flow positions, then there

is a flow positionfu such thatf1 u f2 = fu.

Proof. The proof is by induction on the construction off1 and f2. The proof is straightforward.�

Lemma 5.25 (Join of Flow Positions is Correct).For any flow positionsf1, f2, and ft, where

f1 t f2 = ft, ft is the least upper bound off1 and f2. That is, f1 v ft, f2 v ft, and for anyf ′t such

that f1 v f ′t and f2 v f ′t, it must be thatft v f ′t.

Lemma 5.26 (Meet of Flow Positions is Correct).For any flow positionsf1, f2, and fu, where

f1 u f2 = fu, fu is the greatest lower bound off1 and f2. That is, fu v f1, fu v f2, and for anyf ′u

such thatf ′u v f1 and f ′u v f2, it must be thatf ′u v fu.
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Proof. The proofs for these two lemmas are directly parallel to those for the analogous lemmas for

types. �

5.9 Other Properties

Lemma 5.27 (Decomposition of Flow Position Joins).If f is a simple flow position andf v
f1 t f2, then eitherf v f1 or f v f2.

Proof. Case analysis on the rule used to joinf1 and f2. �
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CHAPTER VI

JUSTIFICATION RULES

Chapter 5describes the data-flow judgements thatDDP produces, but says nothing about which

judgementsDDP produces, nor about how it finds those judgements. This chapter fills in both of

these gaps by describing thejustification rulesavailable toDDP.

Justification rules are specified as rules of inference, such that every judgement produced by

DDP must be justified using only those rules. WhenDDP produces a set of judgements, those

judgements are always justified by the justification rules of this chapter. Looked at in reverse,

wheneverDDP tries to solve a goal and find a judgement satisfying it, it consults the available

justification rules and follows them backwards. It constructs a judgement to satisfy the goal, such

that the judgement can possibly be justified using the available rules.

Each justification rule has not only a conclusion, but also a number of assumptions. For the

rule to be used, all of its assumptions must be satisfied. In particular, each judgement listed in the

assumptions must itself be justified by another justification rule. The result is that, in general, the

full justification of a judgement is a tree of justifications. Such a tree is called ajustification tree.

6.1 Meta-Judgements

The justification rules frequently refer to two meta-judgements. First, the meta-judgement:

B j

means that judgementj is justifiedwith respect toJ andP. A justified judgement is locally consis-

tent with the other judgements inJ . That is, if all of the other judgements inJ are correct, thenj

must be as well.

Looking ahead to the correctness proof ofChapter 8, note that this reasoning is circular and thus

not enough to ensure that a set ofjustified judgements is also a set of correct judgements. For that

to be the case, the justification rules, given in this chapter, are careful to ensure that, roughly, the
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assumptions of each rule refer only to information about the syntax of the program or to information

about previous states of execution. More precisely, any chain of justifications and assumptions must

eventually refer to previous states; some individual assumptions may refer to the current execution

state, but there may not be a cycle of such justifications and assumptions. By consistently arranging

the justification rules that their assumptions look back in time in this fashion, the stage is set for a

proof by induction over steps of execution.

The second common meta-judgement referred to is a strictly weaker claim thanB j. It looks

like:

stat? b B j

This judgement means that judgementj accounts forthe possible execution of statementstatunder

bindingsb. It means that ifj is correct in one configuration, and thenstatexecutes—thus moving

to a new configuration—thatj will remain correct in the new configuration. The bulk of the justifi-

cation rules given in this chapter are techniques for justifying these accounts-for meta-judgements

for different kinds of statementssand data-flow judgementsj.

6.2 Subgoals: Justification Rules Viewed Backwards

Justification rules can be viewed in reverse as a tactic for finding a solution to a goal. Whenever

DDP updates a goal, i.e. whenever it runs theUpdate function described inChapter 3, it finds a

justification rule whose conclusion isB j for some judgementj that is a possible answer to the goal.

Then it tries to satisfy each assumption of the rule. Some assumptions can be satisfied directly by

simply modifying the goal’s tentative solution. Others must themselves be justified, in which case

DDP must recursively choose another justification rule and try to justify the assumption.

Some assumptions require thatj′ ∈ J for some judgementj′ meeting some list of constraints.

In such a case,DDP creates asubgoalto find a j′ meeting the required constraints. Note that

justification of j is only valid so long as everyj′ of this kind is inJ and justified. If any suchj′

is removed fromJ and replaced with a different judgement, then the justification ofj must also

be revisited. Thus, subgoals correspond to dependencies; a goal’s tentative solution depends on its

subgoals’ tentative solutions.

Consider an example based on the example ofChapter 3. The initial goal is “What isX?”, which
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is written formally as:

X :>?

One of the justification rules is JUST-ONE, which is as follows:

JUST-ONE

meets min( j)

∀(stat,b) ∈ bound stats(P) :

stat? b B j

B j

In order to use this rule,DDP must meet the rule’s assumptions. The strongest assumption to be

met is the one thatj accounts for all statements inP. Statements that do not modifyX are trivial to

account for; the only non-trivial ones in the example program areX := Y andX := p1. Both of

these may both be accounted for using the JUST-VAR justification rule:

T-VAR

v = b[l] v′ = b[l′] v′ :dce t′ ∈ J t′ v t

[l := l′] ? b B v :c t

Ignoring issues of variable bindings, and ignoring the trivial justifications,DDP could use these

rules to reach the following tentative justification tree:

{|UndefinedObject|} v tX

meets min(X :> tX) Y :> tY ∈ J tY v tX p1 :> tp1 ∈ J tp1 v tX

B X :> tX

This justification tree has three holes in it, however:tX, tY, andtp1. It is easy to choosetX once

the other types are known: choose the smallest type that satisfies all of the requirements in the

assumptions. To fill in the holes fortY andtp1, DDP creates two subgoals, one forY :>? and one for

p1 :>?. Informally, these subgoals are read “What is Y?” and “What is p1?”. When these goals are

initially created, they will be given a tentative solution of⊥. This leads to the following justification
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graph, which corresponds to the state of the example execution fromFigure 3.4.

{|UndefinedObject|} v {|UndefinedObject|}

meets min(X :> {|UndefinedObject|})
Y :> ⊥ ∈ J ⊥ v {|UndefinedObject|}

p1 :> ⊥ ∈ J tp1 v {|UndefinedObject|}

B X :> {|UndefinedObject|}

Note that the type ofX at this stage is{|UndefinedObject|} instead of⊥. For clarity,Chapter 3ignored

thismeets min requirement and thus left out the{|UndefinedObject|}’s from the entire example exe-

cution.

Also, note that the judgementX :> {|UndefinedObject|} is probably not correct. This example

justification only shows that the judgement isconsistentwith certain other judgements inJ , namely

Y :> ⊥ andp1 :> ⊥. These two judgements are probably not justifiable. AsDDP progresses, it will

adjust them to be justifiable, that isY :> t1 for some typet1 andp1 :> t2 for some typet2, but then

X :> {|UndefinedObject|}will no longer be justifiable and must itself be adjusted. Thus, changes ripple

from judgements to other judgements depending on them, to other judgements depending on those,

and so on until all judgements are justified with respect to each other.

6.3 Overall Justification Approach

This subsection gives several general strategies available for justifying a judgement. All of these

justification rules are listed inFigure 6.1.

First, the judgement may be given some conservative value that is clearly correct regardless of

how the program behaves. Such a judgement is justified with one of the rules: JUST-PRUNE-TYPE,

JUST-PRUNE-TFLOW, JUST-PRUNE-FLOW, JUST-PRUNE-SEND, or JUST-PRUNE-RESP.

Second, one might show that a judgement is tautological. The rule JUST-CTX is such a rule: the

type in the judgement subsumes the type that the context already presumes the variable will hold.

Finally, a judgement may account for every statement in the program and be justified by the

rule JUST-ONE. The JUST-ONE rule requires that a judgement account for the possible execution

of every statement in the program. Additionally, JUST-ONE requires that any judgement meets

a certain minimum value. In combination, these two requirements prepare for an inductive proof
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JUST-PRUNE-TYPE

B v :c >

JUST-PRUNE-FLOW
fp is a simple flow position

B fp→ >fp

JUST-PRUNE-TFLOW

B fp→∗ >fp

JUST-PRUNE-SEND
ss= >s

B mctx
send←−−− ss

JUST-PRUNE-RESP
rs = >r

B statctx? b
send−−−→ rs

JUST-ONE
meets min( j)

∀(stat,b) ∈ bound stats(P) :
stat? b B j

B j

JUST-CTX
c[v] v t

B v :c t

Figure 6.1: Overall Justification Rules

MIN-NONTYPE
j is not a type judgement

meets min( j)

MIN-PARAMETER
v is a parameter

meets min(v :c t)

MIN-VAR
{|UndefinedObject|} v t

meets min(v :c t)

Figure 6.2: Minimum Requirements of Judgements

of correctness. The first part requires that no matter which statement executes the judgement will

remain correct, and the second part shows that the judgement is correct initially. The minimum

judged values are shown inFigure 6.2. They require that any type judgement for a non-parameter

includes the type ofNilObj, becauseNilObj is the initial value automatically assigned to variable

whenever a new contour is allocated that holds that variable.

Not all judgements are justified by the rules ofFigure 6.1. In particular, transitive flow judge-

ments, senders judgements, and responders judgements have their own justification rules which are

described later.

6.4 Type Justifications

Figure 6.3gives several type justifications that are trivial. Most of these rules justify judgements

where the only variable changed is different from the one the judgement refers to.

Figure 6.4gives the non-trivial type justifications for all other statement types. For the most

part these are straightforward. For example, T-VAR accounts for a statementl := l′ by the type

for the variable on the left being larger than a type for the variable on the right in the same context

(or more specifically, the same context after the context broadening described insection 5.7). To a
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first approximation, T-SELF accounts for a statementl := self by the type for the variable on the

left including the class cone type for the class the statement appears in. To a closer approximation,

T-SELF allows this type to be whittled down by the context of the type judgement.

The type justification rules for method and block invocations are T-SEND, T-SENDVAR, and

T-BEVAL. Each of these reduces the justification to the justifications of two other judgements. One

judgement accounts for types of the variable to be assigned when the method or block returns, while

the other judgement accounts for types of the parameters of any methods or blocks that might be

invoked by the statement.

Figure 6.5gives the first group: they account for the type of the variable on the left. The three

trivial justifications, T-SEND-R-TRIV, T-SENDVAR-R-TRIV, and T-BEVAL-R-TRIV, require the

assigned variable to be different from the variable of the type judgement. The other three follow this

pattern:

1. Find the methods or blocks that may be invoked by the statement.

2. Find the overall context that the method or block will run in, by finding types for the param-

eters and, for method invocations, the receiver.

3. Divide that context, inCPA fashion, into a number of small contexts.

4. For each combination of an invoked method or block, a return statement in that method or

block, and one of the small contexts, find a type for the returned variable and require that the

type of the variable being judged is a supertype of that type.

Figure 6.6gives justifications for parameter type judgements that were not justified by the rule

T-CONTEXT. Aside from the trivial justifications, the pattern for all of them is to find the statements

that might invoke the relevant block and, for each of these, to find a type for the relevant argument

passed by the statement.

6.5 Flow Justifications

Figure 6.7andFigure 6.8give those justifications for flow judgements that are trivial. There are

many of them; in addition to justifications based on mismatching variables, there are justifications
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T-LIT-TRIV
v , b[l]

[l := lit ] ? b B v :c t

T-VAR-TRIV
v , b[l]

[l := l′] ? b B v :c t

T-NEW-TRIV
v , b[l]

[l := new class] ? b B v :c t

T-BLOCK-TRIV
v , b[l]

[l := block] ? b B v :c t

Figure 6.3: Trivial Type Justifications

T-LIT
v = b[l] t′ = lit type(lit ) v t

[l := lit ] ? b B v :c t

T-SEL
v = b[l]

selector= Selector label:ls numargs:ms

t′ = S{|ls,ms|} v t

[l := selector] ? b B v :c t

T-VAR
v = b[l] v′ = b[l′] v′ :dce t′ ∈ J t′ v t

[l := l′] ? b B v :c t

T-SELF
v = b[l] (c[self] u {|m.class|}+) v t

[l := self] ? b B v :c t

T-NEW
v = b[l] {|class|} v t

[l := new class] ? b B v :c t

T-BLOCK
v = b[l] B{|block|}dce v t

[l := block] ? b B v :c t

T-SEND
[l := send(lrcvr, sel, l1, . . . , lm)] ? b RB v :c t
[l := send(lrcvr, sel, l1, . . . , lm)] ? b S B v :c t

[l := send(lrcvr, sel, l1, . . . , lm)] ? b B v :c t

T-SENDVAR
[l := sendvar(semvarlrcvr, lselvar, l1, . . . , lm)] ? b RB v :c t
[l := sendvar(semvarlrcvr, lselvar, l1, . . . , lm)] ? b S B v :c t

[l := sendvar(semvarlrcvr, lselvar, l1, . . . , lm)] ? b B v :c t

T-BEVAL
[l := beval(lblockvar, l1 . . . lm)] ? b RB v :c t
[l := beval(lblockvar, l1 . . . lm)] ? b S B v :c t

[l := beval(lblockvar, l1 . . . lm)] ? b B v :c t

Figure 6.4: Type Justifications.
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T-SEND-R-TRIV
v , b[l]

[l := send(lrcvr, sel, l1 . . . lm)] ? b RB v :c t

T-SEND-R
v = b[l] stat= [l := send(lrcvr, sel, l1 . . . lm)]

statctx? b
send−−−→ rs ∈ J ctx = c rs = (m1, c1) . . . (mp, cp)
∀i ∈ 1 . . . p : ∀ vret ∈ ret vars(mi) :
∃t′ : (vret :ci t′ ∈ J) ∧ (t′ v t)

[l := send(lrcvr, sel, l1 . . . lm)] ? b RB v :c t

T-SENDVAR-R-TRIV
v , b[l]

[l := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b RB v :c t

T-SENDVAR-R
stat= [l := sendvar(lrcvr, lselvar, l1 . . . lm)]

statctx? b
send−−−→ rs ∈ J ctx = c rs = (m1, c1) . . . (mp, cp)
∀i ∈ 1 . . . p : ∀ vret ∈ ret vars(mi) :
∃t′ : (vret :ci t′) ∈ J) ∧ (t′ v t)

[l := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b RB v :c t

T-BEVAL-R-TRIV
v , b[l]

[l := beval(lblockvar, l1 . . . lm)] ? b RB v :c t

T-BEVAL-R
stat= [l := beval(lblockvar, l1 . . . lm)]

statctx? b
send−−−→ rs ∈ J ctx = c rs = (blk1, bctx1) . . . (blkp, bctxp)

∀i ∈ 1 . . . p : blki .retFromMethod∨ ∃t′ : (ret var(blki) :bctxi t′ ∈ J) ∧ (t′ v t)

[l := beval(lblockvar, l1 . . . lm)] ? b RB v :c t

Figure 6.5: Return Type from Subroutine Invocations
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T-SEND-S-TRIV
(v is not a method parameter)

[l l := send(lrcvr, sel, l1 . . . lm)] ? b S B v :c t

T-SEND-S
(v is the k-th parameter of method meth)

stat= [l l := send(lrcvr, sel, l1 . . . lm)]

methctx
send←−−− ss∈ J ctx = c

∀(sstat, sb, sctx) ∈ ss:
sstat, stat ∨ sb, b ∨ (∃t′ : (b[lk] :sctx t′ ∈ J) ∧ (t′ v t))

[l l := send(lrcvr, sel, l1 . . . lm)] ? b S B v :c t

T-SENDVAR-S-TRIV
(v is not a method parameter)

[l l := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b S B v :c t

T-SENDVAR-S
(v is the k-th parameter of method meth)

stat= [l l := sendvar(lrcvr, lselvar, l1 . . . lm)]

methctx
send←−−− ss∈ J ctx = c

∀(sstat, sb, sctx) ∈ ss:
sstat, stat ∨ sb, b ∨ (∃t′ : (b[lk] :sctx t′ ∈ J) ∧ (t′ v t))

[l l := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b S B v :c t

T-BEVAL-S-TRIV
(v is not a block parameter)

[l l := beval(lblockvar, l1 . . . lm)] ? b S B v :c t

T-BEVAL-S
(v is the k-th parameter of block blk)
stat= [l l := beval(lblockvar, l1 . . . lm)]

blkctx
send←−−− ss∈ J ctx = c

∀(sstat, sb, sctx) ∈ ss:
sstat, stat ∨ sb, b ∨ (∃t′ : (b[lk] :sctx t′ ∈ J) ∧ (t′ v t))

[l l := beval(lblockvar, l1 . . . lm)] ? b S B v :c t

Figure 6.6: Parameter Types after Subroutine Invocations
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based on the statement type not having the relevant kind of flow at all. Self flow positions only

flow via self statements, and variable flow positions only flow via variable assignments, message

sends, and returns. No flow at all happens for literal creation, class instantiation, and block creation,

because these statement types only create new objects and do not move around existing objects.

Figure 6.9gives the flow justifications that are non-trivial. F-SELF and F-VAR are straight-

forward. The three send justifications F-SEND, F-SENDVAR, and F-BEVAL simply divide the

justification into smaller justifications:

• Justification that the judgement accounts for the flow of the receiver:

[stat] ? b self B [: V v :]c→ f

This meta-judgement claims that the flow judgement [:V v :]c → f accounts for the flow

from the receiver ofstat into the method receiver of any method that may be invoked bystat.

• Justification that the judgement accounts for the flow of each parameter:

stat? b i B [: V v :]c→ f

This meta-judgement claims that the flow judgement accounts for flow into theith parameter

of any invoked method bystat.

• Justification that the judgement accounts for flow from the method or block back to the state-

ment:

stat? b < ms> B [: V v :]c→ f

This meta-judgement claims that the judgement accountss for flow from the return of method

msinto the assigned variable ofstat.

Figure 6.10, Figure 6.11, andFigure 6.12give justifications for flow into a method or block.

They follow exactly the same pattern as the justification for types of method or block parameters.

Figure 6.13, Figure 6.14, andFigure 6.15give justifications for flow out of a method and block

through returned values.

Figure 6.16gives the justification rule for transitive flow judgements. It insists that for some

decomposition of the target into a number of components, there are simple flow judgements from
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each component back into the target. Typically,f ′ will be a sum flow position [:Σ fs :], and the

implementation will choose a decomposition off ′ into the elements offs.

6.6 Responders Justifications

There are three responders justification rules, corresponding to the three statement types that can

invoke a subroutine. They are R-SEND, R-SENDVAR, and R-BEVAL, and they are listed inFig-

ure 6.17.

In each case, the justification relies on having a type for each argument, receiver, block variable,

and selector variable that is present in the statement. These types are used to predict which methods

or blocks will be invoked by the statement when it executes. In R-SEND, the combination of the

type of the receiver and the selector that is present limit the number of methods that may be invoked.

In R-SENDVAR, the possible selectors are found using thepossible selectorsfunction on the type

of the selector variable; this function assumes that its argument has a finite number of selector

types included, and it returns the list of selectors corresponding to those types. In R-BEVAL,

the possible responding blocks are similarly found by using thepossible blocks function. For

both R-SENDVAR and R-BEVAL, if there are not a finite number of selectors or blocks, then the

function may not be used and thus the justification may not be used. In such a case the responders

judgement can only justified with JUST-PRUNE-RESP.

Once the responding methods or blocks are found, the argument types are used to find the

contexts under which the method can execute. Those contexts are split into multiple smaller contexts

usingcpa split. Finally, the responders set is required to include each possible pair of a small

context and a method or block.

6.7 Senders Justifications

Senders judgements are justified indirectly, using JUST-ONE. A justified senders judgement must

account for every statement in the program.

Figure 6.18gives various trivial ways that a judgement may account for a statement. S-SELF,

S-LIT, S-SEL, S-VAR, S-NEW, and S-BLOCK rely on the statement not invoking any subroutine

at all. S-SEND-TRIV, S-SENDVAR-TRIV, and S-BEVAL-TRIV rely on the statement invoking
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F-LIT

[l := literal] ? b B [: V v :]c→ f

F-VAR-TRIV
v , b[l]

[l′ := l] ? b B [: V v :]c→ f

F-NEW

[l := new class] ? b B [: V v :]c→ f

F-SELF-TRIV

[l := self] ? b B [: V v :]c→ f

Figure 6.7: Trivial Flow Justifications for Variable Flow Positions

F-SELF-TRIV0
m, b[method]

[l := self] ? b B [: S m:]c→ f

F-SELF-TRIV1

[l := literal] ? b B [: S m:]c→ f

F-SELF-TRIV2

[l := l′] ? b B [: S m:]c→ f

F-SELF-TRIV3

[l := new class] ? b B [: S m:]c→ f

F-SELF-TRIV4

[l := block] ? b B [: S m:]c→ f

F-SELF-TRIV5

[l := send(lr , sel, l1 . . . lm)] ? b B [: S m:]c→ f

F-SELF-TRIV6

[l := send(lr , selvar, l1 . . . lm)] ? b B [: S m:]c→ f

F-SELF-TRIV7

[l := beval(lb, l1 . . . lm)] ? b B [: S m:]c→ f

Figure 6.8: Trivial Flow Justifications for Self Flow Positions
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F-VAR
v = b[l] v′ = b[l′] [: V v′ :]dce v f

[l′ := l] ? b B [: V v :]c→ f

F-SELF
v = b[l] m = b[method] [: V v :]dce v f

[l := self] ? b B [: S m:]c→ f

F-SEND
stat= l l := send(lrcvr, sel, l1 . . . lm)

[stat] ? b self B [: V v :]c→ f ∀i ∈ 1 . . .m : stat? b i B [: V v :]c→ f
∀ms∈ method specs(P) : stat? b < ms> B [: V v :]c→ f

[l l := send(lrcvr, sel, l1, . . . , lm)] ? b B [: V v :]c→ f

F-SENDVAR
stat= l l := sendvar(lrcvr, lselvar, l1 . . . lm)

[stat] ? b self B [: V v :]c→ f ∀i ∈ 1 . . .m : stat? b i B [: V v :]c→ f
∀ms∈ method specs(P) : stat? b < ms> B [: V v :]c→ f

[l l := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b B [: V v :]c→ f

F-BEVAL
stat= l l := beval(lblockvar, l1 . . . lm) ∀i ∈ 1 . . .m : stat? b i B [: V v :]c→ f

∀bs∈ block specs(P) : stat? b < bs> B [: V v :]c→ f

[l l := beval(lblockvar, l1 . . . lm)] ? b B [: V v :]c→ f

Figure 6.9: Non-Trivial Flow Justifications

F-SEND-PARAM-TRIV
b[lk] , v

[l l := send(lrcvr, sel, l1 . . . lm)] ? b kB [: V v :]c→ f

F-SEND-PARAM

[l l := send(lrcvr, sel, l1 . . . lm)]ctx? b
send−−−→ rs ∈ J rs = (m1, ctx1) . . . (mp, ctxp)

∀i ∈ 1 . . . p : [: V mi .params[k] :] ctxi v f

[l l := send(lrcvr, sel, l1 . . . lm)] ? b kB [: V v :]c→ f

F-SEND-SELF-TRIV
rcvr , v

[l l := send(lrcvr, sel, l1 . . . lm)] ? b self B [: V v :]c→ f

F-SEND-SELF

[l l := send(lrcvr, sel, l1 . . . lm)]ctx? b
send−−−→ rs ∈ J rs = (m1, ctx1) . . . (mp, ctxp)

∀i ∈ 1 . . . p : [: S mi :]ctxi v f

[l l := send(lrcvr, sel, l1 . . . lm)] ? b self B [: V v :]c→ f

Figure 6.10: Flow into Method Invocation
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F-SENDVAR-PARAM-TRIV
v , b[lk]

[l l := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b kB [: V v :]c→ f

F-SENDVAR-PARAM

[l l := sendvar(lrcvr, lselvar, l1 . . . lm)]ctx? b
send−−−→ rs ∈ J rs = (m1, ctx1) . . . (mp, ctxp)

∀i ∈ 1 . . . p : [: S mi .params[k] :] ctxi v f

[l l := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b kB [: V v :]c→ f

F-SENDVAR-SELF-TRIV
v , b[lrcvr]

[l l := send(lrcvr, lselvar, l1 . . . lm)] ? b self B [: V v :]c→ f

F-SENDVAR-SELF

[l l := sendvar(lrcvr, lselvar, l1 . . . lm)]]ctx? b
send−−−→ rs ∈ J rs = (m1, ctx1) . . . (mp, ctxp)

∀i ∈ 1 . . . p : [: S mi :]ctxi v f

[l l := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b self B [: V v :]c→ f

Figure 6.11: Flow intosendvar Statements

F-BEVAL-PARAM-TRIV
v , b[lk]

[l l := beval(lblock, l1 . . . lm)] ? b kB [: V v :]c→ f

F-BEVAL-PARAM
vk = v ∀i ∈ 1 . . .m : vi = b[l i ] stat= l l := beval(lblock, l1 . . . lm)

statctx? b
send−−−→ rs ∈ J rs = (blk1, bctx1) . . . (blkp, bctxp)
∀i ∈ 1 . . . p : [: V blki .parms[k] :]bctxi v f

[l l := beval(lblock, l1 . . . lm)] ? b kB [: V v :]c→ f

Figure 6.12: Flow intobeval Statements

F-RETURN-SEND-BADVAR
meth= lookup meth specP(mcalled) v < ret vars(meth)

[l l := send(lrcvr, sel, l1 . . . lm)] ? b < mcalled > B [: V v :]c→ f

F-RETURN-SEND
stat= l l := send(lrcvr, sel, l1 . . . lm)

methctx
send←−−− ss∈ J ctx = dce meth= mcalled

∀(sstat, sb, sctx) ∈ ss:
stat, sstat ∨ sb, b ∨ [: V b[l] :] dsctxe v f

[l l := send(lrcvr, sel, l1 . . . lm)] ? b < mcalled > B [: V v :]c→ f

Figure 6.13: Flow from methods intosend statements
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F-RETURN-SENDVAR-BADVAR
meth= lookup meth specP(mcalled) v < ret vars(meth)

[l l := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b < mcalled > B [: V v :]c→ f

F-RETURN-SENDVAR
stat= l l := sendvar(lrcvr, lselvar, l1 . . . lm)

methctx
send←−−− ss∈ J ctx = dce meth= mcalled

∀(sstat, sb, sctx) ∈ ss:
stat, sstat ∨ sb, b ∨ [: V b[l] :] dsctxe v f

[l l := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b < mcalled > B [: V v :]c→ f

Figure 6.14: Flow from methods intosendvar statements

F-BRETURN-BEVAL-BADVAR
block= lookup block specP(binvoked) block.returns, v

[l l := beval(lblockvar, l1 . . . lm)] ? b < binvoked> B [: V v :]c→ f

F-BRETURN-BEVAL-METHRET
block= lookup block specP(binvoked) block.retFromMethod

[l l := beval(lblockvar, l1 . . . lm)] ? b < binvoked> B [: V v :]c→ f

F-BRETURN-BEVAL
stat= l l := beval(lblockvar, l1 . . . lm)

blkctx
send←−−− ss∈ J ctx = dce blk = binvoked

∀(sstat, sb, sctx) ∈ ss:
stat, sstat ∨ sb, b ∨ [: V b[l] :] dsctxe v f

[l l := beval(lblockvar, l1 . . . lm)] ? b < binvoked> B [: V v :]c→ f

Figure 6.15: Flow from blocks intobeval statements

F-TRANS
f v f ′

f1 t f2 t · · · t fp = f ′

∀i ∈ 1 . . . p : ∃ f ′i : fi → f ′i ∈ J ∧ f ′i v f ′

B f →∗ f ′

Figure 6.16: Transitive Flow Judgements
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R-SEND
rcvr = b[lrcvr] ∀i ∈ 1 . . .m : vi = b[l i ]

rcvr :dctxe trcvr ∈ J ∀i ∈ 1 . . .m : vi :dctxe ti ∈ J (m1, . . . ,mn) = lookup∗P(trcvr, sel)
∀i ∈ 1 . . .n : ci = <: (mi) self = trcvr, . . . , mi .parm[m] = tm :>

∀i ∈ 1 . . .n : (c(i,1), . . . , c(i,pi )) = cpa split(ci) ∀i ∈ 1 . . .n : ∀ j ∈ 1 . . . pi : (mi , c(i, j)) ∈ rs

B [l := send(lrcvr, selector, l1 . . . lm)]ctx? b
send−−−→ rs

R-SENDVAR
rcvr = b[lrcvr]

selvar= b[lsemvar] ∀i ∈ 1 . . .m : vi = b[l i ] rcvr :dctxe trcvr ∈ J selvar:dctxe tsel ∈ J
∀i ∈ 1 . . .m : vi :dctxe ti ∈ J (sel1, . . . , selq) = possible selectors(tsel)

(m1, . . . ,mn) = append(lookup∗P(trcvr, sel1), . . . , lookup∗P(trcvr, selq))
∀i ∈ 1 . . .n : ci = <: (mi) self = trcvr, . . . , mi .parm[m] = tm :>

∀i ∈ 1 . . .n : (c(i,1), . . . , c(i,pi )) = cpa split(ci) ∀i ∈ 1 . . .n : ∀ j ∈ 1 . . . pi : (mi , c(i,j)) ∈ rs

B [l := sendvar(lrcvr, selvar, l1 . . . lm)]ctx? b
send−−−→ rs

R-BEVAL
blockvar= b[lblockvar] ∀i ∈ 1 . . .m : vi = b[l i ] blockvar:dctxe tblocks∈ J

∀i ∈ 1 . . .m : vi :dctxe ti ∈ J (B{|blk1|}bctx1, . . . , B{|blkn|}bctxn) = possible blocks(tblocks)
∀i ∈ 1 . . . n : ci = <: (blki) blki .parm[1] = t1, . . . , blki .parm[m] = tm :>

∀i ∈ 1 . . . n : (c(i,1), . . . , c(i,pi )) = cpa split(ci)
∀i ∈ 1 . . . n : ∀ j ∈ 1 . . . pi : (blki , c(i, j)) ∈ rs

B [l := beval(lblockvar, l1 . . . lm)]ctx? b
send−−−→ rs

Figure 6.17: Responders Justifications
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the wrong kind of subroutine, e.g. the fact thatbeval statements always invoke blocks and not

methods.

The non-trivial justifications are shown inFigure 6.19. Forsend statements, the statement may

be left out of the senders set if either the selector does not match (S-SEND-BADSELECTOR), or

if there is a type for the receiver such that the method cannot be executed (S-SEND-BADRECV).

Otherwise, the statement must be included in the senders set (S-SEND).

Forsendvar andbeval statements, a different approach is taken. The flow is traced forward for

the relevant selector or block. Only if the flow reaches the statement must the statement be included

in the senders set; if the flow does reach the statement, the statement is added to the senders set

with no further inquiry. The justification rules that implement this approach are S-SENDVAR and

S-BEVAL.

In S-SENDVAR, flow is traced forward from each statement creating a selector object for the

relevant selector. The functionflow selectis then used to extract the portion of the reached flow

position that matches the variable from which thesendvar statement is reading its selector. Note

that if there is no statement instantiating a selector object for the relevant selector, then one can

choosefsel = ⊥ctx and thus use S-SENDVAR to reject allsendvar statements as potential senders.

In S-BEVAL, the functionblk stat is used to find the statement that creates the block, and then

flow selectis used to find that portion of the reached flow position that matches the variable the

beval statement reads its block from.
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S-SELF

[l := self] ? b B bsctx
send←−−− ss

S-LIT

[l := literal] ? b B bsctx
send←−−− ss

S-VAR

[l := l′] ? b B bsctx
send←−−− ss

S-NEW

[l := new cname] ? b B bsctx
send←−−− ss

S-BLOCK

[l := block] ? b B bsctx
send←−−− ss

S-SEND-TRIV
(bs does not specify a method)

[l := send(lrcvr, sel, l1 . . . lm)] ? b B bsctx
send←−−− ss

S-SENDVAR-TRIV
(bs does not specify a method)

[l := sendvar(lrcvr, selvar, l1 . . . lm)] ? b B bsctx
send←−−− ss

S-BEVAL-TRIV
(bs specifies a method)

[l := beval(lblock, l1 . . . lm)] ? b B bsctx
send←−−− ss

Figure 6.18: Trivial Senders Justifications
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S-SEND-BADSELECTOR
sel, bs.selector

[l := send(lrcvr, sel, l1 . . . lm)] ? b B bsctx
send←−−− ss

S-SEND-BADRECV
rcvr = b[lrcvr] rcvr :>ctx trcvr ∈ J

b.method< lookup∗P(trcvr, sel)

[l := send(lrcvr, sel, l1 . . . lm)] ? b B bsctx
send←−−− ss

S-SEND
stat= l := send(lrcvr, sel, l1 . . . lm)

(stat, b,>ctx) ∈ ss

[l := send(lrcvr, sel, l1 . . . lm)] ? b B bsctx
send←−−− ss

S-SENDVAR
stat= l := sendvar(lrcvr, lselvar, l1 . . . lm)

rcvr = b[lrcvr] selvar= b[lselvar]
∀(ls := sel,b′′) ∈ bound stats(P) : ∃ f ′′ :

([: V static bindings(b′′)[ls] :]>ctx →∗ f ′′ ∈ J) ∧ ( f ′′ v fsel)
∀[: V selvar:]c′ ∈ flow select(fsel, selvar) : ∃(rcvr :dc′e tr ∈ J) :

(mcalled < (lookup∗P(tr , sel))) ∨ ((stat, b, c′) ∈ ss)

[l := sendvar(lrcvr, lselvar, l1 . . . lm)] ? b B bsctx
send←−−− ss

S-BEVAL
stat= l := beval(lblockvar, l1 . . . lm)

blockvar= b[lblockvar]
blk inst := blk = blk stat(b′) [: V blk inst :]dctxe →∗ fb ∈ J?

([: V blockvar:]ctx1, . . . , [: V blockvar:]ctxp) = flow select(fb,blockvar)
∀i ∈ 1 . . . p : (stat,b, ctxi) ∈ ss

[l := beval(lblockvar, l1 . . . lm)] ? b B bsctx
send←−−− ss

Figure 6.19: Non-Trivial Senders Justifications
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CHAPTER VII

SUBGOAL PRUNING

The most distinguishing feature ofDDP is that it sometimesprunessubgoals of the main goal.

When it does so, it will mark all of those goals with a trivial result. Those results may be justified

with the -PRUNE rules described inChapter 6, e.g. PRUNE-TYPE. Then, since the -PRUNE

justifications require no judgements in their assumptions, many goals may be discarded from direct

consideration: any goal that was previously needed by one of the pruned goals, and is not needed

by any other goal, may be removed fromworklist and from theneeds andneededBy network.

Once goals have been pruned, irrelevant goals are located by a mark-and-sweep traversal of the

needs network, starting fromultimateGoal. Any goal that is not marked is removed from both

worklist and theneeds network.

7.1 Specific Pruning Algorithms

Pruning algorithms inDDP are heuristics. It is difficult to be certain that one pruning algorithm is

better than another, just as it is difficult to be certain what the best variation of a particular algorithm

is. Below are described three algorithms that are implemented as part of the present work. Many

variations are possible, even within these three algorithms, but they are described the way they have

been implemented.

7.1.1 Stop Dead

The Stop Dead pruning algorithm lets the inference run either for a fixed number of updates or for a

fixed amount of time, after which it prunes the ultimate goal if no solution has been found yet. The

maximum number of updates or the maximum amount of time is a parameter of the algorithm.

The main advantage of Stop Dead is that it is very simple to implement. It also provides a

convenient benchmark to compare against other pruning algorithms.
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7.1.2 Limited Relevant Set

The Limited Relevant Set pruning algorithm prunes enough goals so that the total number of goals

needed by the ultimate goal—therelevant set—remains relatively small. The target size of the

relevant set is a parameter to the algorithm calledpruneSize. Limited Relevant Set runs the pruner

when the size of the relevant set, plus the number of updates since the last pruning, grows beyond

twice pruneSize. This approach balances the time spent pruning, which is roughly proportional

to pruneSize, against the time possibly wasted due to analyzing goals that are going to be pruned

later.

When the pruner runs, it marks the firstbounds goals that are found during a breadth-first

search of theneeds graph starting from the ultimate goal. It then prunes all goals that are marked

and that depend on a goal that is not marked. All goals that are not marked are then discarded from

immediate consideration.

A small refinement of this approach is used in the implementation. As described so far, the

Limited Relevant Set approach could be viewed as measuring the distance of each goal from the root

goal and then choosing the closestpruneSize goals to the root. The refinement is a modification

of the distance metric. Instead of treating each subgoal relation as adding a distance of 1, some

subgoal relations add a distance of 4. Specifically, the “longer” subgoal relations are the responders

goals that are subgoals of message-send goals, i.e. the responders subgoal triggered when a goal’s

judgement is justified with T-SEND or T-SENDVAR. The number 4 was chosen after a few manual

trial executions; the optimal ratio is not known. The effect of this refinement is to prune some

subgoals more readily than other subgoals. The intuition behind this approach is that such subgoals

tend to have a relatively minor effect on the root goal, compared to other subgoals, and thus they are

safer to stop pursuing.

The author expects the Limited Relevant Set to provide both good running times and usually

good precision in inferred types. The running time is indirectly limited by having a limited number

of relevant goals to process. However, that limited number is still in the thousands, and thus it would

seem that enough analysis is performed to find a precise inference in many cases.

Additionally, it is hoped that tuning the pruning threshold, gives an effective way to control the
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running time and memory usage of the algorithm. The experiments described inChapter 11discuss

this idea in more detail.

7.1.3 Shrinking Relevant Set

Shrinking Relevant Set is a generalization of Stop Dead and Limited Relevant Set. Shrinking Rele-

vant Set begins computation with a limited number of relevant goals, but as time passes (or as goals

are updated) the size of the relevant set is decreased. That is, each time the goal set is pruned, the

pruner can choose a smaller maximum size than the previous time.

There are a number of ways to schedule the size limit decreases as time passes. If the pruner

schedules just one decrease after a fixed amount of time, and that decrease limits the relevant set to

size 1, then the algorithm is a combination of the Limited Relevant Set and Stop Dead algorithms: it

uses a fixed limited size for a limited amount of time (or number of updates). If the pruner schedules

no decreases at all, then the algorithm is exactly the Limited Relevant Set algorithm.

A more sophisticated pruning schedule, driven by experimental data, is described inChapter 11.

7.2 When to Prune

One final aspect of the pruning strategy is to specifywhenpruning should occur. The current

approach is to prune whenever the number of updates since the last pruning equals the pruning

threshold that was last chosen. That is, after a pruning, each surviving goal is updated once and then

another round of pruning is executed.

This approach balances the time spent pruning with the time spent updating goals. The hope

is that execution time is not overwhelmed either by pruning itself, or by uselessly updating goals

that will end up being pruned anyway. Alternatives, however, have not been investigated, and the

optimal frequency of pruning is not known.
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CHAPTER VIII

CORRECTNESS OF DDP

8.1 Overview

This chapter proves the following theorem:

Theorem 2 (Correctness of DDP).If a set of judgementsJ is justified with respect to a program

P, thenJ is correct forP.

Essentially this theorem verifies that the voluminous and subtle justification rules ofChapter 6

result in a set of judgements that are correct according to the straightforward definitions ofChapter 5

and under the straightforward semantics ofChapter 4. This choice applies systematic mathematical

analysis to the portion of the problem where subtle errors are easy to make and where mathematical

analysis is especially effective.

Some portions of the algorithm’s correctness are left unverified by this theorem. In particular,

it does not verify that the dependency-driven worklist portion of the algorithm generates a set of

justified judgements. However, that portion of the algorithm is similar enough to proven worklist

algorithms for intraprocedural data-flow analysis [5] that we believe the reader will be confident the

algorithm generates sets of justified judgements even without a proof.

Additionally, the pruning algorithm is not addressed in this document’s mathematical analysis.

That omission, however, is an advantage: the algorithm generates correct judgements regardless of

what the pruner does. So long as the pruner limits its activities to pruning, i.e. to giving solutions to

goals that are conservative enough not to be correct without requiring any subgoals, the correctness

of the algorithm does not depend on the behavior of the pruner.

8.2 Lemmas

This section gives several lemmas that will be used in the full proof of correctness of the following

section.
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The purpose of the Writing Variables Lemma for Types is to show that a type judgement remains

correct after a variable is written.

Lemma 8.1 (Writing Variables for Types). Let cfg = (act, cnt) = stepn(P), l be any label for a

writable variable incfg, objectbe a valid object forcfg, andvar :ctx typebe a type judgement that is

correct forcfg. Suppose one of the following is true:

1. var , dynlookup varP(cfg,act, l) .

2. ctx does not matchact.

3. obj is of typetype.

Thenvar :ctx typeis correct forwrite var(cfg,l,obj).

Proof. Let cfg′ = write var(cfg, l,obj). Note thatall activations(cfg) = all activations(cfg′),

i.e. there is no activation that is either created or destroyed by writing a variable. Consider each

act ∈ all activations(cfg) in turn. The definition insubsection 5.5.1requires the following property

of act:

ctx(act, cfg) ∧ var = dynlookup varP(cfg,act, var.label)

⇒ read var(cfg,act, var.label) ∈ type

Let cidmod be the contour that is modified by the call towrite var:

cidmod = lookup contourP(cfg,act, l, false)

Suppose thatctx(act, cfg) and thatvar = dynlookup varP(cfg, act, var.label), because otherwise

the required property is vacuously true. There are several cases, all straightforward.

Supposel = var.label but that the contour that was written is different from the contour thatl

will be read from inact:

cidmod, lookup contourP(cfg,act, l, false)

Then,write var would not modify the contourl will be read from inact, and thus readingl from

act will give the same object as before. Thus the required property will remain true.
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Suppose thatvar , dynlookup varP(cfg,act, l). If l , var.label then the object read fromcfg′

is the same as fromcfg and thus the required property is trivially true. Otherwise, by the Unshared

Contours Lemma fromsubsection 5.1.4, the contour modified by thewrite var must be different

from that read incfg′, and thus the object read must still be the same in bothcfg′ andcfg.

Suppose that all of the above cases are false and thatctx does not matchcfg.act. Then it is

impossible for bothctx to matchact andcidmod to be the contour thatl would be read from inact.

Since the type judgement is well-formed, any parameter mentioned inctx must be readable from

any activation wherevar may be read. Since by assumption the contourvar is read from iscidmod,

the objects read for each parameter mentioned inctxmust be the same in bothactandcfg.act. Thus,

ctx does not matchact and the necessary property is vacuously true.

Finally, if all of the other cases are false, thenobject∈ typeand the contour read from iscidmod.

In this case, the necessary property is trivially true. �

The following two lemmas are used to show that a flow judgement remains correct across one

step of execution, with respect to one particular object. The first lemma concerns the case where

a step of execution writes a different object than the object of interest. Informally, when the first

lemma applies, it is said that “the flow of the object does not increase”.

Lemma 8.2 (Writing Different Objects for Flow). If object, object′, andl is a label for a writable

variable of configurationcfg, and:

cfg′ = write var(cfg, l,object)

then:

flowpos(object, cfg′) v flowpos(object, cfg)

Proof. Note that the flow position of an object in a configuration may be computed by enumerating

the activations and contours of the configuration, selecting the contours and activations that bind

a variable or method receiver to the object, and then taking the union of the simple flow positions

designating those bindings.

In this case, the configurationscfgandcfg′ are the same except that one contour has one variable

rebound. Letcid be the id of the contour that changes. Ifcid does not bindl to object in cfg, then
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same contours and activations will contribute the same simple flow positions to the overall flow

position ofobject in bothcfg andcfg′. Thus the union of those flow positions will be the same for

cfgandcfg′. If, however,cid does bindl to object, then there will be one fewer contribution incfg′.

That is,

flowpos(object, cfg) = (flowpos(object, cfg′) t f )

for somef . Therefore,

flowpos(object, cfg′) v flowpos(object, cfg)

�

The second lemma concerns the case where the object of interest is written in a step of execution

usingwrite var. In this case, the flow position of the object does increase. The lemma is used to

show that a set of flow judgements correctly allows for the increase of flow position that occurs.

Lemma 8.3 (Writing Variables for Flow). Let cfg = (act, cnt) = stepn(P), l be any label for a

writable variable incfg, objectbe a valid object forcfg, G be a set of flow judgements,f = lhs(G),

and f ′ = rhs(G). Supposeflowpos(object, cfg) v f . Let

var = dynlookup varP(cfg, act, l)

and

ctx = minctxP(cfg)

and

fpos= [: V var :]ctx

and

cfg′ = write var(cfg, var.label,object)

If fposv f ′, thenflowpos(object, cfg′) v ( f t f ′) .

Proof. Again, one contour will be different incfg andcfg′. Call it cid. That contour will contribute

one new flow positionfcid to the flow position ofobject, i.e.

flowpos(object, cfg′) = flowpos(object, cfg) t fcid
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wherefcid is the new contribution. If one considers each way thatvar might be determined with

dynlookup var, one sees that the resulting contributionfcid will be exactlyfposas declared above.

Thus:

flowpos(object, cfg′) = flowpos(object, cfg) t fpos

flowpos(object, cfg) t fpos v f t f ′

flowpos(object, cfg′) v f t f ′

�

The next lemma gives a basis for reasoning about where selector objects for a particular selector

may be found as the program runs.

Lemma 8.4 (Flow Position of Selectors).Suppose that:

• sel is any selector.

• For each literal statement:

([l := sel], b) ∈ bound stats(P)

that instantiates selectorsel, it is true that∃i : fi = [: V b[l] :]>ctx.

• The judgementsf1→∗ f ′1, . . . , fp→∗ f ′p are correct for configurationsstep0(P) . . . stepn+1(P).

• fp =
⊔p

i=1 f ′i

Then, for any selector objectso ∈ all objectsP(stepn+1(P)) whose selector issel, both of the

following are true:

• There is anm≤ n+1 such that the flow position ofsoin stepm(P) is subsumed byfi for some

i.

• so is within flow positionfp in stepn+1(P).

Proof. The proof is by induction on the number of steps of execution.

The base case is trivial: there are no selector objects at all inall objectsP(step0(P)).
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Assume, then, that the lemma is correct for configurations 0. . .n, and we will show that it must

also be correct for configurationn + 1.

Suppose the next statement to execute instepn(P) is a literal statementl := sel, under static

bindingsb, that instantiates the selector of interest. The statement creates a new selector object

whose flow position instepn+1(P) is exactly [:V b[l] :] c for some contextc. Since ([l := sel],b) ∈
bound stats(P), there must be anfi which subsumes [:V b[l] :] c, thus satisfying the first claim of

the lemma for the newly created selector object. Regarding the second claim, notice that whenever

f →∗ f ′ holds true, it must be thatf v f ′. Since fi →∗ f ′i , the flow position of the new selector

object must be subsumed byf ′i as well by fi . Sincefp =
⊔p

i=1 f ′i , the object must also be in position

fp.

Now consider any other selector objectso ∈ all objectsP(stepn+1(P)) whose selector issel.

Inspection of the semantics will show that any such object must also be present in the previous

configuration, i.e.,so∈ all objectsP(stepn(P)). Further, the flow position ofsois unaffected by the

execution ofl := sel. Therefore, for any such objectso, the inductive hypothesis leads immediately

to the same claims holding true for configurationn + 1.

Finally, suppose some statement executes other than a literal statement instantiatingsel. In that

case, no new selector objects forselappear instepn+1(P). The first claim of the lemma is satisfied

by choosing the samei’s for each selector object that, due to the inductive assumption, must have

been available instepn(P). The second claim is slightly less trivial, because the flow positions of the

existingselselector objects may have increased. For any such objectso, however, the first claim that

the flow position ofsowas subsumed by one of thefi ’s in an earlier configuration, when combined

with the lemma’s assumption thatfi →∗ f ′i is true in configurations 0. . .n + 1, leads to the second

claim. The flow position ofsomust be subsumed byf ′i and thus also subsumed byfp. �

The next lemma is similar to the last, except that it reasons about the location of block objects

instead of selector objects.

Lemma 8.5 (Flow Position of Blocks).Suppose that:

• bsspecifies any block inP.
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• If

([l := block],b) ∈ bound stats(P)

is the statement corresponding tobs, then [:V b[l] :]>ctx →∗ fp is true for configurations

step0(P), . . . ,stepn+1(P).

Then, for any closurebobj ∈ all objectsP(stepn+1(P)) whose block isbs, bobj is in the flow

positionfp in stepn+1(P).

Proof. The proof closely parallels that for the Flow Position of Selectors Lemma. �

8.3 Main Theorem

The proof is subdivided into proofs of the following propositions for arbitraryn:

F∗(0)

T(0)

T(n) ⇒ R(n)

S(n) ∧ T(n + 1)∧ F∗(n + 1) ⇒ S(n + 1)

T(n) ∧ R(n) ∧ S(n) ⇒ T(n + 1)

R(n) ∧ (n = 0∨ S(n− 1)) ⇒ F(n)

F∗(n) ∧ F(n) ⇒ F∗(n + 1)

where:

• T(n) means that the type justifications inJ are correct for configurationstepn(P).

• F(n) means that the flow justifications inJ are correct for configurationstepn(P).

• F∗(n) means that the transitive flow justifications inJ are correct for the configurations

step0(P) throughstepn(P).

• R(n) means that the responders justifications inJ are correct for configurationstepn(P).
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• S(n) means that the senders justifications inJ are correct for configurationsstep0(P) through

stepn(P).

Given these propositions, it is then straightforward to show by induction that:

∀n : T(n) ∧ F(n) ∧ F∗(n) ∧ R(n) ∧ S(n)

which is the desired theorem.

Each subsection below proves one of the above propositions to be true. In general, each sec-

tion assumes that neitherstepn(P) nor stepn+1(P) is halted, because otherwise the proof in that

subsection is trivial.

8.3.1 Transitive Flow Judgements in the Initial Configuration

It is to be shown that:

F∗(0)

That is, it is to be shown that the transitive flow judgements ofJ are correct in the initial configu-

ration.

For all f →∗ f ′ ∈ J , it must be shown thatf v f ′. Each such judgement must have been

justified with either J-PRUNE-FTRANS or F-TRANS. If rule J-PRUNE-FTRANS was used, then

f ′ = >fp, and thus it must be thatf v f ′. If F-TRANS was used, thenf v f ′ is directly listed as an

assumption of the justification.

8.3.2 Type Judgements in the Initial Configuration

It is to be shown that:

T(0)

That is, it is to be shown that the type judgements ofJ are correct in the initial configuration.

There are no parameters bound in the initial configuration, and thus any type judgements regard-

ing parameters are trivially true. The type judgements involving non-parameter variables must be

justified with either JUST-PRUNE-TYPE or JUST-ONE; they cannot be justified with JUST-CTX,

because only parameters have a type specified by a context. For any judgement that is justified by

JUST-PRUNE-TYPE, the type is> and thus the judgement is trivially true. For any non-parameter
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type judgement justified by JUST-ONE, the type must subsume{|UndefinedObject|}. Since every

variable binding in the initial configuration binds toNilObj, these judgements are correct in the

initial configuration.

8.3.3 Responders Judgements

It is to be shown that:

T(n)⇒ R(n)

That is, it is assumed that the type judgements are correct in configurations up ton, and it must be

shown that these assumptions imply that the responders judgements are true in configurationn.

A responders judgementstatctx ? b
send−−−→ rs must be justified by one of the rules R-SEND,

R-SENDVAR, or R-BEVAL, JUST-PRUNE-RESP, depending on the form ofstat and on whether

rs is non-trivial. To avoid triviality, suppose thatrs , >r , thatstat is about to execute, thatb[block]

is the block of the main activation, and thatctx matches the main activation ofcfg. Under these

assumptions, JUST-PRUNE-RESP could not have been used.

Considersend statements first. That is, suppose:

stat= [l := send(lrcvr, selector, l1 . . . lm)]

The rule R-SEND must have been used. By the Lexical Binding Lemma, the variablesvrcvr,

etc., deduced fromlrcvr, etc., by using the binding mapb, are the same as would be found with

dynamic bindings on the main activation ofcfg. By the inductive assumption, and by the proofs

above for correctness of type judgements, all of the type judgements required by the assumption of

R-SEND are correct forcfg. Thus, the object found by readinglrcvr is a member of typetrcvr, and

likewise the object found by reading anyl i is a member of typeti .

Thus, lookup∗ will have correct information and so the method about to be invoked is one of

the methodsm1 . . .mn. Suppose the method ismj . Further, the context of the new activation must

matchc j . Due to properties ofcpa split, it must further be that the new activation matches one of

the split contextsc( j,k). By the last assumption of R-SEND, it must be that

(mj , c( j,k)) ∈ rs

Thus the judgement is correct.
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The proofs forsendvar andbeval statements are close parallels. Note that the justification

rules implicitly require, respectively, that there are a finite number of possible selectors possibly

held byselvaror a finite number of blocks possibly held byblockvar. If this criterion fails, then

these justification rules cannot have been used and thus the responder set must be>r .

8.3.4 Senders Judgements

It is to be shown that:

S(n) ∧ T(n + 1)∧ F∗(n + 1)⇒ S(n + 1)

That is, it is assumed that the type judgements and transitive flow judgements are correct in config-

uration instepn+1(P) and that the senders judgements are correct in configurations up tostepn(P),

and it must be shown that the senders judgements are also true in configurationn + 1. Let cfg =

stepn+1(P) andcfg′ = step(cfg).

Consider any senders judgementblkctx
send←−−− ss. To avoid triviality, suppose thatss, >s. If

stat is the statement about to execute incfg, andb is the binding map of the main activation ofcfg,

then there must be a justification that:

stat? b B blkctx
send←−−− ss

Suppose the justification is one of S-SELF, S-LIT, S-SEL, S-VAR, S-NEW, or S-BLOCK.

Then, stat is not a message-sending statement and the judgement is true. If the justification is

instead one of S-SEND-TRIV or S-SENDVAR-TRIV, then the main activation ofcfg′ cannot be an

activation forblk; blk is not the block for a method. Similarly, if the justification is S-BEVAL-TRIV,

then the main activation will not be for a method, whereasblk is for a method.

If the justification is S-SEND-BADSELECTOR, then the main activation ofcfg′ must be for a

method other thanblk’s method; the selectors do not match.

Suppose then that the justification is S-SEND-BADRECV. Since, by assumption, type judge-

ments are correct, the receiver object for thesend must be a member of typetrcvr. By assumption,

the method ofblk is not a method that may be invoked by any member oftrcvr, and thus the method

of cfg′ must not be the method ofblk.

If the justification is S-SEND, then the statement and context are inssand thus the judgement

is correct.
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Suppose the justification is S-SENDVAR. Then, by the Flow Position of Selectors Lemma,

the only selector objects inall objects(cfg) that match the selector ofbs’s method are within the

flow positionfsel as calculated in the assumptions of S-SENDVAR. Iffsel includes no variable flow

position matchingselvarand the current activation, then the selector sent by thissendvar execution

cannot matchbs’s method. Further, just as with S-SEND, iftr does not include any objects such that

thesendvar could invokebs’s method, then thissendvar execution cannot invokebs’s method.

Under all other circumstances, there will be a tuple inssthat matches the current activation ofcfg.

In any of these cases, the senders judgement is still correct.

If the justification is S-BEVAL, then the proof parallels that for S-SENDVAR, only using the

Flow Position of Blocks Lemma instead of the Flow Position of Selectors Lemma.

8.3.5 Type Judgements

It is to be shown that:

T(n) ∧ R(n) ∧ S(n)⇒ T(n + 1)

That is, it is assumed that the type judgements and responders judgements ofJ are true for config-

urationn, and it is also assumed that the senders judgements ofJ are true in configurations 0. . .n.

It must be shown that these assumptions are sufficient to imply that the type judgements remain true

in configurationn + 1.

Let cfg = stepn(P) andcfg′ = stepn+1(P). Consider any type judgementvar :ctx type∈ J . By

assumption, this judgement must be justified by some justification rule.

If the judgement is justified by JUST-PRUNE-TYPE, thentype = >. Since all objects are

members of this type, the judgement is correct.

If JUST-CTX rule is used to justify the judgement, then the result is true tautologically. If a

context matches an activation in a configuration, then any variable read in that activation must yield

an object in the type specified by the activation.

The only other possible justification is JUST-ONE. The rest of this section assumes that the

judgement is justified with JUST-ONE, and thus that there is a justification that the judgement

accounts for each statement in the program.

Suppose thatvar is a parameter. If the statement about to execute incfg is not asend, beval, or
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sendvar statement, or if the current block is about to return a value, then the set of objects bound

to var in cfg′ will be a non-strict subset of the objects bound tovar in cfg. To see this, observe that

write var never modifies a parameter binding, and thus the only way to bind a new object tovar

is to create a new activation. In none of these cases is a new activation created.

Three cases remain ifvar is a parameter. Suppose first that the statement about to execute is:

l l := send(lrcvr, sel, l1 . . . lm)

This statement can only be accounted for by T-SEND, which in turn requires that one of the rules

T-SEND-S and T-SEND-S-TRIV is used to justify that the judgement accounts for the execution

of this send statement. T-SEND-S-TRIV cannot actually be used in this case, however, because

it requiresvar not be a parameter. Thus T-SEND-S must have been used. T-SEND-S requires

that a senders judgement has been justified forvar’s method, and by assumption this judgement

must be correct forcfg. Thus if var’s method is the main method ofcfg′, there must be a tuple

(stat, ctx) among the senders that have been found, wherestat is the statement about to execute and

ctxmatches the main activation ofcfg. T-SEND-S thus requires that there has been a type judgement

for the relevant argument of thesend statement. By assumption, that type judgement is correct in

cfg. Since T-SEND-S requires thattypesubsume this type, and since by assumptiontypesubsumes

the type ofvar in cfg, typemust also subsume the type ofvar in cfg′.

The final two cases wherevar is a parameter are those where the statement about to execute is

abeval or sendvar statement:

l l := beval(lb, l1 . . . lm)

l l := sendvar(lrcvr, selvar, l1 . . . lm)

In both cases, the reasoning exactly parallels that forsend statements.

Now suppose thatvar is not a parameter.

Suppose thestatementabout to execute is:

l := self

The semantics of this statement are that the current receiver is written into variablel.
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There must be some justification that the judgement accounts for this statement. If the jus-

tification is by T-SELF-TRIV, thenvar , b[l]; since Mini-Smalltalk is statically bound, then also

var , dynlookup varP(cfg, act, l). Thus, by the Writing Variables Lemma, the judgement remains

true incfg′.

If, however,var = b[l], then the justification must be by T-SELF. Suppose thatctx matches the

current configuration; otherwise the Writing Variables Lemma is enough to prove that the judgement

remains true incfg′. By the assumptions of T-SELF,typemust be a supertype of the intersection of

two types: a cone type for the class the method belongs to, andctx[self]. By the Semantic Sanity

Lemma, the current receiver must in fact be an element of the cone type. Further, by assumption,

the current receiver is an element of typectx[self]. Since the receiver matches both types, it also

matches the intersection of those types, as systematic inspection of the definition of meet for types

(Figure 5.6) and contexts (Figure 5.9) will verify. Thus, again by the Writing Variables Lemma for

Types, the type judgement remains correct in configurationstepn+1(P).

Next, suppose that the statement about to execute is:

l := l′

If var is not l, the variable being written, or ifctx does not matchcfg, then the Writing Variables

Lemma implies that the type judgement remains true. These two trivial cases appear for every

statement type below, and since the proof is the same, it will not be repeated.

The remaining case is thatvar is l, the variable that is written. There must have been a T-VAR

justification used to account for this statement, in which case,typewill be a supertype of sometype′

wherel′ :dctxe type′ ∈ J . Since the type judgements ofJ are assumed to be true forcfg, it must

be that the object read froml′ is in type′. Thus the object is also intype, and the Writing Variables

Lemma implies that the judgement remains correct.

Next, suppose that the statement about to execute is:

l := new cname

The object written will be of classcname. If var is bound tol, then T-NEW will have been used,

andvar will include the class type ofcnameand thus will include the newly created object.
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Next, suppose that the statement about to execute is:

l := block

A new closure is created. Ifvar is written, then the type judgement will have been justified by

T-BLOCK, andtypewill include the type of the closure.

Next, suppose that a send statement is about to execute:

l l := send(lrcvr, sel, l1 . . . lm)

or:

l l := beval(lb, l1 . . . lm)

or:

l l := send(lrcvr, selvar, l1 . . . lm)

In all three cases, only parameters are modified, and so these cases are trivial.

Next, suppose that the current block is ending. Suppose that itsretFromMethodis true and that

the block returnsl. By the Send History Lemma, either execution halts, or the variable written

was on the left hand side of asend or sendvar statement of a previous execution. Ifvar is the

variable that is written, then the current method must have been one of themi ’s considered in the

T-SEND-R or T-SENDVAR-R justification for this statement. Furthermore, the current activation

must be matched by one of the contextsc(i,j). Thus, the type returned must have been correctly

predicted, and that type will be included in the type ofvar.

Finally, suppose that the current block is ending, that the block’sretFromMethodis false, and

that the block returnsl. The proof is similar to that for method returns. Thebeval statement is

correctly located, the context of the current activation was one of those that was predicted, and the

type of the left hand side of thebeval statement will include the type that is returned.

All cases have now been considered. The type judgements ofJ remain correct across an invo-

cation ofstep.

8.3.6 Simple Flow Judgements

It is to be shown that:

R(n) ∧ (n = 0∨ S(n− 1))⇒ F(n)
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That is, it is assumed that the responders judgements ofJ are true for configurationn, and that,

unlessn = 0, the senders judgements are true in configurationn − 1. It must be shown that the

simple flow judgements ofJ are true in configurationn.

As usual, letcfg = (act, cnt) = stepn(P), andcfg′ = step(cfg). Consider any non-nil object

objectwith a non-empty flow position incfg. Also consider any subsetG of the flow judgements

in J such thatlhs(G) subsumes the flow position ofobject in cfg. It will be shown that the flow

position ofobjectin cfg′ will be subsumed bylhs(G) t rhs(G). Since the argument holds for anyG
and anyobject, the set of simple flow judgements inJ must be correct forcfg.

First, suppose the statement about to execute is:

l := self

If act.rcvr , object, then the Writing Different Objects Lemma implies that the flow position of

object in cfg′ will be subsumed by its flow position incfg, and thus the desired property is true.

Therefore, suppose that the current receiver isobject, i.e. act.rcvr = object.

Since by assumptionlhs(G) subsumes the flow position ofobject, and since the left-hand side

of a justified flow judgement cannot be>fp or a sum flow position, there must be a flow judgement

in G whose left-hand side is a self flow position for the current method and whose context matches

the current activation:

[: S cfg.act.block.meth:]ctx→ f ′ ∈ G

where ctx(act, cfg)

Since this judgement has been justified, eitherf ′ = >fp, in which case the result is trivial, or the

judgement must be justified by JUST-ONE. Suppose it is justified by JUST-ONE. It follows from

the Lexical Binding Lemma that there must be a tuple ([l := self],b) ∈ bound stats(P), where

b matches the static variables visible from the main activation ofcfg. Thus, by the assumptions of

JUST-ONE, there must be a justification of:

[l := self] ? b B [: S cfg.act.block.meth:]ctx→ f ′

Only F-SELF may be used to justify this assertion. Thus,f ′ must be a variable flow position for
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b[l]:

[: V b[l] :] dctxe v f ′

By the Lexical Binding Lemma,b[l] must be the same as the static variable found dynamically by

starting atcfg. Thus, by the Writing Variables Lemma for Flow, the flow position ofobject in cfg′

is subsumed bylhs(G) t rhs(G).

Next, suppose that the statement about to execute is:

l := literal

The semantics instantiate a new object for the literal. Since the object is required to have a new

contour, it must be different fromobject, and thus the Writing Different Objects Lemma applies.

The flow ofobjectdoes not increase after a literal statement.

Next, suppose that the statement about to execute is:

l := l′

Suppose the flow position ofobjectincludes a variable flow position forl′, in the minimum context

of cfg. (Otherwise, the flow position ofobjectdoes not increase.) The subset of flow judgements

must include one judgementf → f ′ where f is a variable flow position forl′. Unlessf ′ = >fp (a

trivial case), the judgement must have been justified with F-VAR. Thusf ′ must include a variable

flow position forl in a context matchingcfg. Thus,lhs(G) t rhs(G) must include the flow position

of objectin cfg′.

Next, suppose that the statement about to execute is:

l := new l′

The flow position ofobjectremains the same. The only flow position that increases is that of the

newly created object, andobjectcannot be that object becauseobjecthad a non-empty flow position

in cfg.

Next, suppose that the statement about to execute is:

l := block

Again, the flow positions of existing objects do not change fromcfg to cfg′.
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Next, suppose that the statement about to execute is:

l l := send(lrcvr, sel, l1 . . . lm)

Consider each label amonglrcvr and l1 . . . lm. For each of these that is bound toobject in cfg,

there must be a judgementfl → f ′l in G where fl is a variable flow position for the variable the

label binds to incfg. These judgements must account for the statement about to execute, and that

accounting must be justified by either F-SEND-SELF or F-SEND-PARAM, both of which have

the same structure. Both F-SEND-SELF and F-SEND-PARAM require that there be a senders

judgement on the statement about to execute. By assumption, each such senders judgement is

correct incfg, and thus the method about to execute must be among those predicted by the senders

judgement. Each of these rules also requires that a flow position corresponding to the receiver

or appropriate parameter of the responding method is included in the right hand side of the flow

judgement. Thus, for each new position incfg′ that bindsobject, there is a flow judgement inG
whose right hand side includes that position. Thus, all new bindings ofobject in cfg′ are included

in rhs(G), and thus the necessary criterion forG is met incfg.

Next, suppose the statement about to execute is:

l l := sendvar(lrcvr, selvar, l1 . . . lm)

or:

l l := beval(lb, l1 . . . lm)

The reasoning exactly parallels that forsend statements, except that forbeval statements, there is

no flow intoself positions.

Next, suppose that the block is ending. Suppose, to avoid triviality, that the variablevarret

that is being returned from the block is bound toobject. Thus, there must be some judgement

f → f ′ ∈ G where f is a variable flow position forvarret in a context matchingact. By the Send

History Lemma, there is a statement that, in a previous step of execution, invoked the method that is

currently returning. There must be an invocation of F-RETURN-SEND, F-RETURN-SENDVAR,

or F-BRETURN-BEVAL to allow f → f ′ to account for returns to this statement from the cur-

rent method ofcfg. It is impossible that one of the trivial rules, F-RETURN-SEND-BADVAR,
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F-RETURN-SENDVAR-BADVAR, or F-BRETURN-BEVAL-BADVAR, was used, becausevarret

is in fact among the returned variables of the current method.

All three of the non-trivial F-RETURN rules have the same pattern. They require that there is a

senders judgement inJ for the returning method. By assumption, senders judgements are correct

in cfg, and thus the senders judgement required by the rule must include the statement where control

is returning. Thus, the rule requiresf ′ to hold a variable flow position for the variable on the left

hand side of the statement where control is returning. Thus,f ′ includes the new binding ofobject,

and the necessary criterion is met.

8.3.7 Transitive Flow Judgements

It is to be shown that:

F(n)∗ ∧ F(n)⇒ F∗(n + 1)

The assumption is that both the simple and transitive flow judgements ofJ are correct for steps

0 . . .n. It is to be shown that the transitive flow judgements ofJ are true for steps 0. . .n + 1.

Refer to the definition of correct sets of transitive flow goals insubsection 5.5.3. LetF be the

set of transitive flow judgements inJ , and letG be any subset ofF . Let object be any object

in configurationi ≤ n other thanNilObj with a non-empty flow position instepi(P). To avoid

triviality, suppose that:

flowpos(object, stepi(P)) v lhs(G)

By the inductive assumption, it is known that for anyj ∈ i . . . n

flowpos(object, stepj(P)) v rhs(G)

It must be shown that:

flowpos(object, stepn+1(P)) v rhs(G)

Each transitive flow judgement inG must be justified, either by rule F-TRANS or by rule

JUST-PRUNE-TFLOW. If any of them are justified by JUST-PRUNE-TFLOW, then the target

of that judgement must be>fp, andrhs(G) must also be>fp. In that case, the criterion is trivially

satisfied. Thus, suppose that none of the goals are justified by JUST-PRUNE-TFLOW, and therefore

that all of them are justified by F-TRANS.
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To meet the requirements of F-TRANS, for each judgementf →∗ f ′ ∈ G, there must be

a decomposition off ′ into simple flow positionsf ′1 . . . f ′p, where, for eachf ′i , there must be a

simple flow judgementf ′i → f ′′i ∈ J . LetH be the set containing all of these requiredf ′i → f ′′i

judgements but no others.

The flow position ofobjectin stepn(P) is subsumed bylhs(H). Since it was just proven that the

simple flow judgements are correct forstepn(P), and sinceH is a subset of the flow judgements of

J , it must be that the flow position ofobjectin stepn+1(P) is also subsumed bylhs(H) t rhs(H).

By the construction ofH , it must be thatlhs(H) v rhs(G). SinceG holds only justified flow

judgements, it must also be thatrhs(H) v rhs(G). Thus, the flow position ofobject in stepn+1(P)

is also subsumed byrhs(G).

Therefore, the correctness requirement is satisfied forG andobject. SinceG andobject are

arbitrary, the set of all transitive flow judgements inJ must also be correct.
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CHAPTER IX

IMPLEMENTING DDP

DDP has been implemented in Squeak [38], a dialect of Smalltalk. This chapter is of interest for

others implementingDDP. First, it describes how to support the features of full Smalltalk that are

not in Mini-Smalltalk. Second, it gives implementation suggestions for various issues that arise.

9.1 Analyzing Full Smalltalk

The paper thus far has describedDDP as an analysis of Mini-Smalltalk, not full Smalltalk. This

chapter describes the modifications toDDP required in order to support full Smalltalk and thus be

part of a practical tool.

9.1.1 Primitive Methods

Full Smalltalk hasprimitive methodsin addition to normal methods. A primitive method has the

usual attributes of a method, plus additionally a reference to someprimitive routinein the underly-

ing interpreter. Whenever asend or sendvar method invokes a primitive method, the designated

primitive routine is executed instead of the block of the method. If the routine is successful, then

control passes directly back to thesend or sendvar statement. If the routine is not successful,

then the block of the method executes after all, just as if the method were not primitive. The block

is called thefail codeof the method, because it is only executed if the interpreter routine has not

succeeded for some reason.

Correct analysis requires that the analysis account for the possible execution of primitive meth-

ods. For each primitive, there are four possible approaches:

• Use the general framework described below.

• Use a conservative approximation suitable for any well-behaved primitive routine.

• Include specialized support for the method.
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• Ignore the primitive routine.

The first approach is to provide the following information to the algorithm:

• typeWhenSentTo:withArgumentTypes:, a function mapping a list of argument types and

a receiver type to the type returned by the routine.

• canFailWhenSentTo:withArgumentTypes:, a function mapping a list of argument types

and a receiver type to a boolean designating whether the primitive can fall into the method’s

fail code when invoked with objects of the specified types.

• receiverEscapes, a function designating whether the receiver can flow to an arbitrary flow

position after this routine is invoked.

• argumentEscapes:, a function designating whether a particular argument can flow to an

arbitrary flow position after the routine is invoked.

Adjusting the justification rules to account for primitive methods is straightforward when they

can be accurately described with the above for attributes. The T-SEND justifications need to check

the contribution of the primitive to the type returned by a method, and they need to ignore return

statements in the method if the primitive does not fail with the supplied arguments. The F-SEND

family needs to check whether flow into the method can escape; if so, then the target of the relevant

flow judgements must be>fp.

The second approach is to use a single conservative approximation for all of the above proper-

ties: the return type is>, the routine can fail regardless of the argument types, and the receiver and

arguments have escaping flow. So long as the primitives are well behaved, this approximation will

yield correct results. As a few examples, well behaved primitives may not modify the stack of run-

ning activations, invoke some other method, or modify the program; on the other hand, well behaved

primitives may access external state and create new objects that do not have instance variables.

The third approach is to add specialized support to the implementation. The rare cases that such

support are necessary are described insubsection 9.1.3.

Finally, some primitive routines may be safely ignored. Certainly, if the primitive is known to be

only an optimization of the method’s fail code, then the primitive may be ignored. Additionally, a
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method’s primitive may be ignored if, for some reason, the method is assumed never to be invoked.

In this case the correctness of the analysis depends on whether the method is invoked. It is better to

have fewer methods assumed not to be invoked, but it may be impossible to reduce the number to

zero. Some methods, such as those for constructing a program and those for debugging a process,

are simply too difficult to model effectively.

9.1.2 Instance Creation

Thenew statement in Mini-Smalltalk is implemented in full Smalltalk as a primitive method called

#basicNew. This primitive is well behaved, in the meaning specified in the previous section, and

thus it can be supported byDDP with the usual mechanism for handling primitives.

To see that this approach results in precise analysis, one must consider the way classes are

represented in Smalltalk. In Smalltalk, classes are normal objects. All objects have a class, and the

class of a normal class object is another class object called ametaclass. (The class of a metaclass

is the normal class MetaClass.) Each metaclass has a single instance throughout the execution

of any Smalltalk program. Thus thetypeWhenSentTo:withArgumentTypes: method for the

#basicNew primitive can determine with accuracy which class is being instantiated: the type of

a class will be a class type where the class is a metaclass, and each metaclass has only a single

instance, in this case the class that is about to be instantiated.

9.1.3 Language Operations as Primitive Methods

Some elements of syntax in Mini-Smalltalk are primitive methods in full Smalltalk. To analyze a

primitive method,DDP treats it as if it included Mini-Smalltalk code for the syntactic element it

represents. For example, any method that references the block-evaluation primitive would be treated

as the following Mini-Smalltalk method:

value

| block result|

block := self.

result := beval block.

return result.
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Similarly handled are the primitive methods forsendvar. The primitive method fornew is

handled differently, as described in the previous section.

9.1.4 Multiple Processes

Mini-Smalltalk programs have a single process. Full Smalltalk programs may start new processes

by invoking the #fork primitive method on a block object. The analysis needs to account for the

fact that the statements in the block may execute even though there is no direct flow of control to

the statements other than through the #fork method.

In fact, the justification rules ofChapter 6do account for the execution of such statements.

Senders-of goals to methods invoked by statements in the block, will consider message-send state-

ments in the block as possible senders. Type goals for variables assigned in the block, will account

for those assignment statements. Flow goals for variables accessed in the block will account for

flow due to those statements executing.

Note that the situation is different for any Smalltalk implementation where processes are started

with blocks that have one or more arguments. Then, statements that access the parameter of the

block, may try to find a type judgement on one of the parameters of the block. Without care, those

type judgements might judge the type to be⊥. In such a Smalltalk, the justification rule for the

type of a parameter of a block, must also check whether the block ever flows into #fork primitive

method; if so, then an appropriate type—possibly>—must be unioned to the type judged for the

parameters of the block.

9.1.5 Initial State

Mini-Smalltalk programs begin with an empty heap and start execution at a specific method. Full

Smalltalk programs begin with a populated heap of objects and with a number of running processes.

The justification rules need to be adjusted so that they account for this initial state. The required

modification is simple: simply adjust the rules MIN-PARAMETER and MIN-VAR to insist that

the judged type be larger than the initial type found by scanning the initial populated heap and the

execution stacks of the initial processes.
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9.1.6 Arrays and Other Collections

Arrays in Smalltalk are supported by a combination of two implementation features: class defini-

tions may include a declaration that a class isindexable, and there are primitive methods #at : and

#at : put : available to read and write to the indexed slots in an instance of such a class.

DDP handles arrays conservatively by ignoring theindexabledeclaration, and by treating the

#at : and #at : put : methods pessimistically: they might return a value of any type, and any object

that is #put : into an indexed slot flows to>fp.

9.1.7 Array Literals and sendvar

Literal statements in full Smalltalk may create arrays that contain selector objects. Since the

contained selector objects might eventually be used by asendvar statement, it is important for

the analysis to account for them. A conservative approach is to maintain an extra table named

arrayLiteralsWithSelector in addition to the other tables described inChapter 9. This table

gives all array literal statements in the program that contain a specified selector. The analysis uses

this table to determine whether it can accurately predict what statements will invoke a particular

method; if the method’s selector appears inanyarray literal in the program, then it is impossible to

accurately find the senders and thus the method should be given a sender set of>s.

9.1.8 Flow of Literals

Many literals in Smalltalk break the requirement of Mini-Smalltalk literal expressions that each

evaluation yields a different object. Every evaluation oftrue, for example, yields the exact same

true object in full Smalltalk. As a result, justified flow judgements inDDP do not account for the

full flow possibilities of these values. It is possible for these values toflow, in the carefully defined

sense ofChapter 5, in other ways than through assignment statements, message sending, and so on.

It is possible for them to appear at remote locations in the program that are unrelated by the usual

flow calculations.

Such a situation is beyond the supported usage ofDDP, however. Under normal usage, flow is

only computed for blocks and selectors, not for any other values, much less values that appear as

literals. Each block appears only once in a program, and thus it is immune to the possible problem
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under discussion. For symbols, the standardDDP rules (such as S-SENDVAR) simultaneously find

flow for all occurences of a symbol of interest, thus eliminating the possibility that a symbol literal

will appear in a location outside of the computed flows.

The current theory of flow and of literal expressions has been chosen for intuitiveness and brief

description. Under normal usage ofDDP, even on full Smalltalk, it provides an accurate description.

It would be possible, instead, to allow Mini-Smalltalk literal expressions to evaluate to the same

object multiple times, while redefining the correctness criterion of flow judgements to ignore such

appearances, and thus obtain a more complicated theory that is closer to full Smalltalk. However,

the added complication has been deemed too high a price for the payoff in extra assurance from the

theory.

9.2 Implementation Issues

This section describes several issues that arise while implementingDDP.

9.2.1 Maintaining Tables About Syntax

The JUST-ONE rule, the basis for most non-trivial justifications, is phrased as requiring an enumer-

ation over all statements in the program. However, such an enumeration is not necessary in practice,

if one has some lookup tables computed in advance. Most of the statements in the program may be

accounted for with the -TRIV rules that require no assumptions. Thus, a general strategy of imple-

menting the justification rules is to focus attention on those statements for which it is non-trivial to

account.

The following lookup tables are useful for this purpose:

• methodsImplementing, which maps each possible selector to the list of methods in the

system that implement the method. This is useful in responders-to goals where the receiver

type is>.

• expressionsSending, which maps each selector to the list ofsend statements that send the

selector. This is useful for finding thesend statements that may invoke a method.

• selectorLiterals, which maps each selector to the list of statements assigning that selec-

tor to a variable. This is useful for finding thesendvar statements that may invoke a method.
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• assignmentsDefining, the list of statements that assign something to a variable. This is

useful for type goals.

• expressionsReading, the list of statements that read from a variable. This is useful for

flow goals.

Note that these tables can be maintained incrementally as the program is modified. The neces-

sary updates are straightforward and fast across common program changes such as adding methods,

changing methods, removing methods, adding classes, and redefining classes.

9.2.2 Parse Tree Compression

Storing expanded parse trees for every method in the system takes considerable storage, both in

number of bytes and number of objects. Yet, each execution ofDDP is likely to access only a small

fraction of all the parse trees in the image. In-memory parse tree compression is a useful technique

to address these two observations: it lowers the number of bytes required, greatly lowers the number

of objects required (because the compressed parse trees can be stored as binary arrays), and, because

few parse trees are needed per execution, typically does not cause a large slowdown.

The general approach is for the lookup tables to refer to expressions and methods indirectly.

Instead of holding object references to the expressions and methods, they hold a reference to a tuple

of the method’s specification (class plus selector) plus the integer index of the expression within the

method. Decompressed parse trees can be cached during each execution ofDDP so that they are

only decompressed once per execution.

9.2.3 Supporting External Source Code

Ideally, the implementation can analyze code regardless of whether it is the code of the currently

running image. If an implementation is flexible, then it supports interactive programming tools

both for the installed code and for code stored outside the image. Additionally the test cases for

the implementation are able to test the analysis against entire code bases that have been carefully

crafted to exercise the implementation.

One challenge of such a flexible implementation is that there are multiple classes named Object,

multiple classes named Block, and so on—one class for each code base that is potentially analyzed.
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In order to access the particular class relevant to the current execution ofDDP, many methods

must have a parameter that specifies the list of classes for this execution even though they do not

have such a parameter in the on-paper description ofDDP. The number of such methods can be

reduced, however, if class BlockType holds a reference to the appropriate Block class for the current

execution, and the SelectorType class likewise holds a reference to the appropriate Selector class.
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CHAPTER X

CHUCK: A PROGRAM-UNDERSTANDING APPLICATION

Chuck is a new program understanding tool for Squeak, developed as part of the present work as an

example application ofDDP. It is an extension of the Refactoring Browser [56] that includes new

queries only answerable with data flow.

Chuck has been posted on the Internet and is now a standard load option of Squeak.

10.1 Overall Interface

Chuck is thoroughly integrated with the standard program browsing tools in Squeak. Squeak already

includescontext menuswhich allow a user to highlight an item of interest in the code and then

perform queries on those items. Chuck uses the same context menus but adds additional queries

to them, queries that require type inference. For example,Figure 10.5shows a user asking Chuck

for the type of an expression. The integration continues in the other direction as well. Answers to

queries are given using standard Squeak tools whenever a tool is available to display the answers.

For example, the response inFigure 10.4uses the same message-listing tool that is used by the

standard Squeak senders-of tool.

10.2 Available Queries

Chuck implements two new queries and two enhanced versions of standard Squeak queries. The

two enhanced queries are used to trace call graphs statically. They are type-sensitive versions of the

implementers-ofandsenders-ofqueries. The standard implementors-of query lets a programmer

find all methods whose name matches a selection, whereas the standard senders-of query locates all

message-send expressions that send the specified message.

The enhanced implementors-of query finds only those methods that, based on DDP type anal-

ysis, might actually respond to the selected message-send expression. As an extreme example, if a

user browses to classBasicLintRuleTest’s new method in Squeak 3.7 and selects the message
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send ofinitialize, the standard query shows 756 potential responders. The enhanced query

shows only one. Another example can be seen by comparingFigure 10.1andFigure 10.2.

Similarly, the enhanced senders-of query returns only those message-send expressions that,

based on type information, may invoke a specified method. To repeat the previous example in

reverse, the standard tool shows 581 possible senders ofBasicLintRuleTest’s initialize

method, while Chuck shows 13. Another example can be seen by comparingFigure 10.3and

Figure 10.4.

The two new queries are used to trace data flow:type queriesandforward-flow queries. A type

query lets the user select an expression or variable and then find, based on analysis information,

what types the expression or variable may hold at runtime. Figure10.5 shows the programmer

asking for a type, and Figure10.6shows how Chuck displays the answer. Similarly, a forward-flow

query lets the user find the expressions or variables in the program that values may reach, if they

start at the selected expression or variable. Such a query is useful, for example, to see where a

constant in the code is ultimately used.Figure 10.7shows the programmer asking for the flow of an

expression, andFigure 10.8displays Chuck’s answer.

10.3 Browsing Derivations and Trying Harder

Chuck not only returns a judgement in response to a query, but can also return the support for

a judgement. One may point to any judgement returned, and find out the other judgements the

analyzer used to reach that conclusion. One may then recursively querythosejudgements to see

how they, in turn, are justified.Figure 10.6demonstrates this functionality.

Chuck’s derivation browser provides two additional navigation links beyond the explanations.

Support for a judgement usually involves reference to other elements of the source code. By select-

ing a judgement, the programmer can cause the code browser to jump to the relevant source code in

the standard code browser. Again,Figure 10.6demonstrates this functionality; the user is about to

view the code underlying one of the judgements Chuck has produced.

Second, the user may select any judgement and ask the analyzer to try harder on that particular

goal, i.e. to use a higher pruning threshold. This ability lets Chuck give fast, imprecise answers

by default, yet still allow users to allocate more time for a question if the question is important
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enough, and the first answer imprecise enough, to warrant the extra resource expenditure. The user

in Figure 10.9is requesting that the main goal be tried again. InFigure 10.10, the user specifies that

greater resources should be used. The result isFigure 10.11, which is a precise result thanks to the

increased resources.
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Figure 10.1: The standard tools show the methods that potentially respond to a message-send
statement.

Figure 10.2: Chuck only displays potential responding methods that are consistent with its type
inferences.
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Figure 10.3: The standard tools show the statements that potentially invoke a method.

Figure 10.4: Chuck only displays potential senders that are consistent with its type inferences.
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Figure 10.5: A user asks for the type of a variable.

Figure 10.6: Chuck displays the type of a variable.
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Figure 10.7: A user asks where a variable’s contents flow.

Figure 10.8: Chuck displays the locations where a variable’s contents flow.
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Figure 10.9: Sometimes Chuck fails due to lack of resources.

Figure 10.10: The user may “retry goal” and specify that more resources should be used the next
time.

Figure 10.11:This time, the greater resources allow Chuck to infer a precise type.
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CHAPTER XI

EMPIRICAL VALIDATION OF DDP

The DDP algorithm has been evaluated empirically. There are two claims that the experiments

attempt to validate:

• The algorithm scales to produce useful results on real programs with hundreds of thousands

of lines of code.

• Subgoal pruning gives significant improvements in the performance of the algorithm.

Additionally, the experiments attempt to determine good choices of the pruning threshold.

The first claim is the most interesting and is the bulk of the thesis. It shows that there is an

effective algorithm for finding type information in large dynamic programs.

The second claim is that subgoal pruning is worth the complexity it adds to the algorithm. A

possible alternative is to only allow pruning the primary goal; the algorithm would be simpler, but

it is expected that the precision would decrease.

This chapter describes the experiments that have been performed, gives the results from those

experiments, and analyzes those results.

11.1 Issues

11.1.1 Better versus Good

Most researchers experimentally validate a program analysis by implementing it and then comparing

one system that uses the analysis to another that does not. Such researchers might compare the

results of the analysis directly to the result of another analysis. Alternatively, such researchers

may modify an application to take advantage of information from the analysis and then compare

the performance of the application when it does or does not use the analysis. For example, they

might implement a dead code remover using information from the analysis, and then measure what

percentage of a sample program is removed by the dead code remover.
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Neither of these approaches work well for testingDDP.

First, there truly are no competing algorithms to compare against, as described in the related

works section. It would be possible to implement competitors myself, but there would still be a

question of whether my implementations were at fault instead of the general algorithm. No serious

contender has been implemented for Smalltalk itself, and thus any existing algorithms would need

some amount of adaptation. Challengers could continuously request variations and improvements

on the adaptations, and the question would always remain whether the next improvement might in

fact make the algorithm practical.

Further, I know of no existing applications, such as compilers, that can take advantage of type

inference. It would be possible to implement such applications, but that requires a large amount of

work.

To put it briefly, this analysis area is simply too new for comparative validation to be effective.

Thus, instead of comparingDDP to other algorithms, the experiments evaluate whether the

algorithm performsusefully wellfor some applications, not whether it performsbetter than some

other algorithm.

The next two sections discuss what usefully good performance would mean forDDP.

11.1.2 Performance of Demand-Driven Algorithms

DDP, like all demand-driven algorithms (seeChapter 2), finds one fact or a small number of facts

for each execution. In contrast, exhaustive algorithms find a complete set of facts about an entire

program. Demand-driven algorithms are typically slower for analyzing entire programs, but faster

for analyzing small portions of programs.

When measuring a demand-driven algorithm, it is the performance per fact inferred that matters.

The experiment thus measures performance per inference instead of the performance for an entire

program.

11.1.3 Performance of Type-Inference Algorithms

There are two aspects of performance of a type-inference algorithm:speedandprecision. An algo-

rithm with better speed finishes more quickly. An algorithm with better precision produces infer-

ences that are more specific, e.g., “x is a SmallInteger” has better precision than “x is a SmallInteger,
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a LargeInteger, or a Float”.

Measurement of speed is straightforward: simply record the amount of time required for the

program to complete. An algorithm that takes half the time as another performs twice as well as the

other.

Measurement of precision might be difficult, at least in principle. What is a precise type infer-

ence? What does it mean for a type to be, say,twiceas precise as another?

In practice, experience withDDP suggests that most results strike observers as either very

precise or very imprecise, with uncertain cases being marked as imprecise. This strategy is con-

sistent with the goal of verifying the algorithm to produce usefully precise results for program-

understanding applications. This strategy does not produce a verified, objective measure of preci-

sion, but does give aconservativemeasure of precision that can be used to verify that the algorithm

passes a certain threshold of precision.

The following specific rules were used to classify each type inferred for a variable:

• > is imprecise.

• {|UndefinedObject|} is precise. It means that the variable is never assigned a value, and thus it

only holdsnil when the program runs.

• Any type that is the union of{|UndefinedObject|} with a simple class type, selector type, or

block type, is precise.

• A union type is precise if, according to human analysis, at least half of its component simple

types may arise during execution. For this analysis, the exact values of arithmetic operations

are not considered; e.g., any operation might return a negative or positive result, and any

integer operation might overflow the bounds of SmallInteger. Notice that this is the only rule

where human analysis is required; the other rules leave no room for interpretation.

• If none of the above rules apply, then the type is imprecise.

11.1.4 Usefulness

Some correct type inferencers are trivial and useless. For example, an inferencer could report type

> for every query it is posed. Since every value is within type>, such an answer is always correct,
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and thus the inferencer is correct as well. Nevertheless, such an inferencer is useless. A compiler

writer would never use such an inferencer even if it was fully implemented and only required a

single function call to invoke. A tool author would never waste screen space on an “infer type”

button that invoked such an inferencer. Correctness is not enough for a useful algorithm.

DDP is more sophisticated than this trivial algorithm, but is it truly useful? Perhaps it is equally

useless, only in a more complicated way? How can one distanceDDP from the trivial algorithms?

Since it is impossible, as discussed in the previous section, to show thatDDP is better than some

other algorithm, one cannot simply show thatDDP is better than some existing non-trivial algo-

rithm. Instead, one must show thatDDP is sufficiently goodthat it is non-trivial. The present work

shows thatDDP is sufficiently good that it may be calleduseful.

Usefulness is a sufficiently strong claim to establishDDP as one type inference algorithm that

finds a non-trivial amount of correct type information. Given the long history of type inference

efforts, this level of performance is high enough to establishDDP as a first algorithm in its domain

to compare against.

Usefulness, however, is not a strong claim. It is not a claim that the tool will be useful for all

purposes or even most purposes. In fact,DDP does not appear useful for dead code removal. It is

also not a claim thatDDP is extremely useful, but instead only that it is somewhat useful, even for

applications where it is useful at all.

From the opposite point of view, to disagree with a weak claim is to make a strong claim in

the opposite direction. The opposite of the claim sought in the present empirical work, is the claim

that DDP is completely useless for all purposes. Readers should be careful before rejecting the

weak claim of usefulness for some purpose, lest you commit yourself to accepting a strong claim of

complete uselessness.

Trying to establish usefulness causes complications. One complication is that usefulness de-

pends on the effort a particular user is making. A screwdriver is very useful for someone who wants

to screw things together, but quite useless for someone who wants to prove a mathematical theo-

rem. To address this complication, the present work examines multiple typical applications of type

inference and evaluates the algorithm’s usefulness for each of these applications. The hope, needed

to satisfy the claim in the thesis statement, is to findDDP useful for at least one typical application.
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Another complication is that usefulness is not a sharp criterion. Much like with beauty, wealth,

and precision, there is no obvious threshold for usefulness. Different users will simply have dif-

ferent standards. To address this difficulty, this document invites readers to speculate on levels of

performance they believe would be sufficient for a type inferencer to be deamed useful. Try make

that decision before reading the final performance data; otherwise, you will lose some of your ob-

jectivity.

Different readers will choose different standards of performance. Some, doubtless, will choose a

high enough standard thatDDP does not meet it. Such readers must conclude that the present work

merely moves the field closer to a useful algorithm, without yet achieving the grail of a usefully

precise type inferencer. An effort is made, below, to specify thresholds that most readers will agree

are sufficient.

Overall, usefulness is not a convenient criterion. Nevertheless, it is an important attribute of any

tool, especially a tool that is claimed to be a first success in its (narrow) field. It is worth making the

effort to address it. To contrast, it would be no improvement of the present work to omit discussion

of the topic of usefulness, simply because it is difficult to talk about or because the conclusions are

not as rigorously established as a proven mathematical theorem. It would be no improvement to

focus all efforts on the clearest problems. Sometimes, important issues are hard to discuss.

11.1.5 Performance Criteria for Usefulness

This section provides some target thresholds we believe are sufficient to call a type inferenceruseful.

The reader is invited to choose thresholds of your own before reading the author’s choices.

A threshold is specified for each of the following applications:

• Programmer queries. A human programmer trying to understand a program, asks the tool

questions as they occur.

• Optimization of individual modules.

• Optimizations that require a small subset of the possible facts. For example, a compiler might

want points-to analysis only for arrays that are indexed from within loops.

• Dead-code removal.
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For the first three applications, the performance of the algorithm on an entire program is irrele-

vant. For the last, the performance on the entire program does matter, but for consistency the target

will be re-calculated as a per-query target.

• Programmer queries: Each fact must require no more than one or two minutes to find. Prefer-

ably they require only a few seconds. Precise information must be found for at least one

quarter of the queries, or programmers are unlikely to use the tool.

• Module optimization: A set of facts for an entire module requires no more than an hour, and

preferably less than a minute. Precise information must probably be found for at least one

tenth of the queries or so, or the analysis will not be worth the effort.

• Targeted optimizations: The requirements are variable. They depend on how small a subset

of the facts the optimizer needs and on how large of a program fragment the optimizer is

targeted at. Again, probably at least one tenth of the queries should yield precise information.

• Dead-code removal: A type inference for every message-send expression in the entire pro-

gram must be found in no more than a week, and preferably no more than a day. Assuming

there are on the order of one million send statements in the program, each query must be

answered in one second. It is unclear how many queries need precise information; perhaps

one tenth would be sufficient, though one would prefer a much higher precision.

These performance goals are not sharply defined—e.g., if it takes two hours instead of one to

analyze a module, the algorithm is still worth something—but they give a rough idea of what level

of performance is needed for a demand-driven algorithm to be useful for various applications.

11.2 Alternative Experimental Designs

There are a number of experiments that could be performed onDDP. Since these experiments are

typical in the field of program analysis, it is worth discussing why those experiments have not been

performed onDDP.

The next section describes the experiments that have actually been performed onDDP.
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11.2.1 Comparison to Competitors

A very common approach for experimentally testing a program analysis is to directly compare the

performance of the algorithm to the performance of other algorithms that solve the same problem. If

DDP performs better than the competitors, then it would show thatDDP is performing well enough

to be interesting.

As described inChapter 2, there are no reported analyses for a dynamic language in such large

programs, and there are no context-sensitive algorithms that even appear to scale. There are, how-

ever, context-insensitive algorithms that have linear complexity and thus should scale in principle.

It would be possible to implement one of the linear-complexity algorithms and thus do a direct

comparison.

The primary difficulty with this approach is that the linear-complexity algorithms are still lin-

ear in the program size in both time and memory. My efforts so far to modify such algorithms

for Smalltalk and run them against a sample large program, have resulted in the machine paging

constantly to disk before the algorithm even finished generating all of the constraints, on a ma-

chine with 512MB of RAM. More engineering work and better machines, might produce a practical

implementation, but the required effort appears to be substantial.

An additional difficulty is that these algorithms are not described for Smalltalk. Thus, while the

general approach of the algorithms transfer, some cleverness is still needed. As one example, there

is no syntax in Smalltalk for instance creation; instead, one sends the #new message to a class object.

This is no challenge at all for a context-sensitive algorithm, but without care, a context-insensitive

algorithm would conclude that all senders of #new return the same type. Likewise, blocks are

invoked by a message send, not by syntax, and those executions as well should get some care in a

serious implementation. Thus, it requires considerable work and cleverness to transfer any of the

existing algorithms to Smalltalk, and for all of that effort, it is unclear which algorithms will in fact

produce results at all to compare against.

11.2.2 Comparison to Competitors in Other Languages

Instead of porting program analyses to Smalltalk, an experimenter could portDDP to other lan-

guages. In particular, one could target the Cecil language [17], and thus perform a direct comparison
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against the mature analyses that are part of the Vortex compiler for Cecil. IfDDP performs better

than the other analyses, then the experiment would show thatDDP is performing well enough to be

interesting.

The first difficulty with this approach is that it again requires a substantial implementation effort.

The experimenter must learn the alternative language thoroughly enough to perform analyses in it,

adapt the analysis to work in that language, and then fully implement the analysis.

The second is that it renders the defense of the thesis less cohesive. It would be perfectly

acceptable to this researcher to prove thatDDP works in some other dynamic language, e.g. Scheme

or Cecil. However, the rest of the defense speaks to the thesis thatDDP works in Smalltalk. Most

significantly, the proof of correctness (Chapter 8) refers to Smalltalk, and the programming tool

(Chapter 10) is implemented in Smalltalk. Changing the thesis, requires not only re-implementing

DDP itself, but also performing again most other components of the defense of thesis.

11.2.3 Performance for Smaller Programs

It would be possible to use smaller Squeak programs, to implement competitors known to be effec-

tive in smaller programs, and then to compare the performance ofDDP to the competitors. IfDDP

produces precise results in smaller programs, then the experiment would show thatDDP is effective

in small programs. Additionally, the experiment wouldsuggestthatDDP would also produce pre-

cise types for larger programs. One would need to perform an additional experiment to show that

DDP does complete in reasonable time for larger programs.

There are three difficulties with this approach.

First, it requires a substantial implementation effort. The competing algorithms are not imple-

mented in Smalltalk, and thus they must be modified to work in Smalltalk and also implemented

from scratch.

Second, this experiment does not stand alone. In order to learn from this experiment, one must

perform an additional experiment to learn (hopefully) thatDDPdoes terminate in reasonable time on

larger programs. Without that experiment, then there is no evidence regardingDDP’s effectiveness

on larger programs.

Finally, the experiment provides only indirect evidence about the desired thesis. This author is
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interested in larger programs than have been proven to be supported by any published algorithm,

but the experiment reports results on small programs. If one has limited time for experiments, then

surely one should seek an experiment that gives direct evidence.

11.2.4 Performance of Applications

Instead of comparing the analysis against other analyses, it would be possible to use the analysis to

improve some application such as a compiler or a dead code remover. Then, one could compare the

performance of the algorithm withDDP to the performance it attains without it. If the applications

perform significantly better when usingDDP than when not using it, and if the applications do not

take an unreasonable amount of time when they consultDDP, then the experiment would show that

DDP is performing usefully well.

The main difficulty with this approach is that a substantial implementation effort is required.

There is no optimizing compiler for Squeak, the dialect of Smalltalk used in this research. Writing

an entire optimizing compiler is clearly an overly extreme effort if the only goal is to validate a

program analysis. Porting to other Smalltalks is a significant effort, as well. Further, it is unclear

which Smalltalk to port to. Cincom VisualWork1 has a good runtime, but it is unclear whether its

owner would let a researcher from the general public access that runtime system. Self [68, 60] has

a good runtime, but the language is different enough to run into the porting difficulties described in

the previous section.

Squeak does have a simplistic dead code remover. However,DDP as it stands is not organized

for effective dead code removal, because the algorithm has been studied for the application of pro-

gram understanding. Dead code removal requires analyzing all of the program that is live, andDDP

per se is more efficient at targeting individual expressions. As discussed inChapter 13, it remains

future work to modifyDDP to be effective in contexts where a large number of queries are being

submitted to it. That effort is too substantial to perform merely for the sake of an experimental

effort. Further, it does nothing to testDDP for use in program understanding tools, which is this

researcher’s primary interest in type inference.

Finally, Squeak does include several code browsers, and those code browsers include various

1 http://smalltalk.cincom.com
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queries used for program understanding. Some of these queries can be improved by usingDDP, and

one could perform an experiment to see how much, if any, those queries are improved if they use

DDP. This experiment would produce the same strength of justification as the experiment actually

performed, with the same amount of effort, and thus only smaller matters decide between them. I

chose the experiment described below, because it gives more direct evidence, and because it seems

like a better contribution to produce a tool that solves a problem not known to be solvable, than to

improve on an existing tool.

11.2.5 Summary

In summary, all of these approaches require a substantial amount of extra implementation work.

Additionally, most of the approaches cause difficulties with the thesis. Either they require a change

to the thesis that would render the defense less cohesive, or they require a change to a thesis that is

less interesting to this researcher.

11.3 Actual Experimental Design

This section describes the experiment actually performed. It directly addresses the two claims

described at the beginning of this chapter.

11.3.1 The Program Code Tested

The experimental executions include queries on Squeak 3.7, a Smalltalk system that, when the type

inferencer is loaded, has 358,872 non-blank lines of code, 2485 classes, and 48,715 methods. The

program includes a large variety of software such as a web browser, an Internet Relay Chat [50]

client, a port of the Alice system [18] for end-user programming in three-dimensional spaces, and

the platform-independent portion of the Squeak interpreter itself [38, 33].

The experiment infers a type for each instance variable in nine components of the program, as

summarized inTable 11.1. A total of 765 variables are analyzed. The components cover a variety

of application domains and a variety of authors.

The algorithm is given no information about where execution might begin or about which por-

tions of the code base constitute an application or a module. Thus, the algorithm sees a single large

300,000-line program even though each query will analyze only a subset of the program.
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Table 11.1:The components of the program analyzed.

Instance
Name variables Description

rbparse 56 Refactoring browser’s parser
mail 73 Mail reader distributed with Squeak
synth 121 Package for synthesis and manipulation

of digital audio
irc 114 Client for IRC networks
browser 32 Smalltalk code browser
interp 173 In-Squeak simulation of the Squeak vir-

tual machine
games 135 Collection of small games for Morphic

GUI
sunit 10 User interface to an old version of SUnit
pda 51 Personal digital assistant

11.3.2 The Trials

Each trial uses the implementation to infer a type of one variable. The trials vary the following

parameters exhaustively:

• They choose a variable from the instance variables in the packages that are tested.

• They choose a pruning threshold that is either infinite or that ranges among 12 values from 50-

10,000. If an infinite threshold is chosen, then no pruning is performed; instead, the algorithm

is executed for 5 minutes on each query. If no result has been found within the time limit,

then a result of> is returned.

For each trial, the amount of time required is recorded, and the inferred type is recorded and classi-

fied as precise or imprecise.

11.3.3 The Machine

The trials are executed on a machine with an Intel Celeron CPU, clock speed 2.40 GHz, and 512

MB of RAM.
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Table 11.2: Speed of the inferencer. Entries give the average speed in seconds for inferences of
instance variables in one component, using the given pruning threshold. For example, when the
pruning threshold is 50, therbparse package requires an average of 0.9 seconds to infer a type
for one of its variables. The “n.p.” column is for executions where no pruning was performed,
and instead the implementation was given 5 minutes per variable to infer a type if it could. The
“overall” entries on the last line are averaged across all individual type inferences; thus, they are
weighted averages of the component averages, weighted by the number of instance variables within
each component.

50 150 300 500 1k 1.5k 2k 3k 4k 5k 7.5k 10k n.p.

rbparse 0.9 2.0 4.0 5.6 10.1 15.0 20.5 27.3 48.0 43.9 73.2 120 155
mail 1.8 3.6 7.9 8.2 14.4 19.6 27.3 37.1 51.0 85.9 89.6 140 219
synth 1.0 3.5 5.8 7.9 12.5 21.3 25.1 35.5 41.9 55.8 123 153 375
irc 0.45 1.5 2.0 2.9 4.8 7.0 6.9 10.6 42.7 41.4 45.7 48.1 62.3
browser 0.82 3.6 6.7 10.1 15.0 20.4 27.8 68.3 52.4 60.1 133 167 207
interp 0.46 1.2 5.1 4.8 8.4 11.3 16.3 24.0 27.9 31.8 51.8 63.5 232
games 0.82 2.2 3.5 5.7 10.8 15.9 19.4 27.8 34.0 36.6 62.1 73.9 161
sunit 1.0 1.5 4.4 4.9 11.2 14.4 11.4 29.6 31.9 36.6 52.1 76.1 47.4
pda 0.68 2.9 5.1 7.7 18.2 27.3 39.5 50.7 67.0 72.0 115 199 271

Overall 0.83 2.3 4.7 6.0 10.6 15.6 20.2 29.7 40.8 47.8 77.0 102 209

Table 11.3: Precision of the inferencer. Entries give the percentage of inferred types considered
by a human as “precise” for instance variables in one component using one pruning threshold. For
example, when the pruning threshold is 50, therbparse package gets precise types inferred for
25.0% of its variables. The “n.p.” column is for executions where no pruning was performed,
and instead the implementation was given 5 minutes per variable to infer a type if it could. As in
Table11.2, the “overall” entries are averaged across inferences, not averaged across the averages in
the table.

50 150 300 500 1k 1.5k 2k 3k 4k 5k 7.5k 10k n.p.

rbparse 25.0 28.6 28.6 28.6 30.4 30.4 32.1 32.1 33.9 32.1 33.9 33.9 30.4
mail 28.8 34.2 37.0 38.4 41.1 37.0 37.0 39.7 37.0 41.1 37.0 38.4 31.5
synth 28.1 31.4 38.8 38.8 38.8 40.5 40.5 43.0 43.8 43.0 46.3 47.1 34.7
irc 69.3 72.8 75.4 76.3 77.2 78.1 79.8 81.6 81.6 80.7 79.8 80.7 77.2
browser 9.4 12.5 12.5 12.5 15.6 15.6 15.6 15.6 18.8 15.6 12.5 15.6 9.4
interp 17.9 21.4 22.0 22.0 22.0 25.4 29.5 31.8 31.8 31.2 31.8 31.2 29.5
games 51.1 51.1 56.3 60.0 60.0 62.2 71.1 74.1 73.3 73.3 74.1 74.8 61.5
sunit 40.0 50.0 60.0 50.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0
pda 19.6 21.6 23.5 23.5 25.5 33.3 33.3 35.3 35.3 37.3 35.3 37.3 21.6

Overall 34.6 37.6 40.7 41.5 42.4 44.1 47.0 49.1 49.1 49.0 49.1 49.8 42.3
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Figure 11.1: Graph of the inferencer’s speed. The horizontal axis is the pruning threshold, and the
vertical axis is the average time required for each inference. The thick black line gives the overall
average, while the gray lines each give an average for one component.
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Figure 11.2: Graph of the inferencer’s precision. The horizontal axis is the pruning threshold, and
the vertical axis is the percentage of the inferences hand-classified as precise. The thick black line
gives the overall percentage, while the gray lines each give a percentage for one component.
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11.4 Summary of Results

The measured speed of the inferencer is tabulated inTable 11.2and summarized as a graph in

Figure 11.1. The measured precision of the inferencer is tabulated inTable 11.3and summarized in

Figure 11.2.

The following types, which are obviously precise, comprise 93% of the inferences that were

classified as precise:

• (57.6%){|C|} t {|UndefinedObject|}, for some classC.

• (30.5%){|UndefinedObject|}, i.e., the variable is never initialized from the code.

• (9.4%){|True|} t {|False|} t {|UndefinedObject|}

• (5.4%){|SmallInt|} t {|LargePosInt|} t {|LargeNegInt|} t {|UndefObject|}2

11.5 Analysis and Conclusions

The experimental results lead to a number of conclusions.

First, the level of pruning matters. Varying the pruning threshold causes the precision to vary

from 34.6% to 49.8%, and the average time required per inference to vary from 0.83 seconds to

209 seconds. The pruning threshold is certainly an effective knob for tuning the algorithm, both for

speed and precision.

Second, there are two pruning thresholds that seem to give a useful level of both speed and pre-

cision. A tight pruning threshold of 50 gives high speed (0.83 seconds) and high enough precision to

be useful (34.6%). Such a choice would be good for all applications described insubsection 11.1.5:

program understanding, targeted optimization, and (barely) dead code removal. Such a choice seems

especially sensible for program-understanding tools, where a user is waiting and every second mat-

ters. A threshold of 2000 gives reasonable speed (20.2 seconds) and a higher precision (47%). Such

a choice would be good for an optimizing compiler, which can often afford to spend several sec-

onds if it gives a better compilation. Higher thresholds than 2000 continue to slow the inferencer

down but do not give much higher precision; the maximum precision attained in the experiments

2Class names have been abbreviated.
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was 49.8% percent. No setting of the threshold gives performance sufficient for practical dead-code

removal.

Third, subgoal pruning is valuable in general. While the experiments that do no pruning, i.e.,

those summarized in the “n.p.” columns ofTable 11.2andTable 11.3, do find a large number of

precise types (42.3%), they require an average of 209 seconds per query to find them. One could

instead use subgoal pruning with a threshold of 1000, and thus find slightly more types that are

precise (42.4%) while requiring an order of magnitude less time per query (10.6 seconds). Alter-

natively, one could choose a pruning threshold of 10,000, thus finding significantly more types that

are precise (49.8%) while requiring roughly half of the time per query (102 seconds).

Finally, there is one anomaly in the data. Some of the trials with no pruning, require more

time than the 300-second maximum. The number of such trials is not yet known, and the amount

of overrun is not yet known, either. It appears that the implementation, for some reason, does not

always stop immediately at 300 seconds. A better implementation would fare better in the no-

pruning trials. The data should be re-analyzed, with all timings greater than 300 seconds being

replaced by the 300 seconds that an improved implementation would have achieved.

11.6 Informal Notes

Perusal of the full experimental results, published separately, provides various intuitions about the

performance of the system. We briefly share some of those intuitions in this section. Much of the

future work inChapter 13consists of exploring these intuitions more fully.

A large amount of code is not overtly polymorphic. The best-performing packages—IRC, Mor-

phic Games, and SUnit—include a large number of variables that are ultimately assigned an ex-

pression such as “FreeCellBoard new”. While program-analysis researchers enjoy considering

sophisticated code patterns, a large amount of practical code uses simpler idioms. The present work

thus reemphasizes an observation from analysis researchers tracing back to at least Knuth’s study

of typical FORTRAN programs [44].

The best-performing package, IRC, additionally has many unused variables. WheneverDDP

is queried for the type of an unused variable, it instantly infers a type of{|UndefinedObject|}. The

presence of unused variables further emphasizes the above observation about simple code being
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surprisingly common.

On the other end of the spectrum, the Browser package provides a number of examples that use

both integer arithmetic and round-trips through the highly polymorphic GUI libraries, in particular

the class PluggableListMorph. In principleDDP has enough polyvariance to be effective in this

case, but for some reason the analysis is not succeeding. Therefore, the browser package provides

excellent example code to investigate for future improvements of the justification rules.

Finally, it should be noted that examples appearing to be simple to a human often require at

least one surprisingly sophisticated and precise step in the derivation. A salient example is the

connection variable of classIRCChannelListBrowser. The values stored into this variable are

ultimately created by either the expressionself in a method of classIRCChannel or the expression

“IRCConnection new.” Both of these expressions are trivial to analyze, but the path between those

expressions and theconnection variable include the parameter of a method namedinitialize:.

Finding the type of the parameter to thisinitialize: method requires analyzing 45 potential

senders ofinitialize: and determining that only one of them is feasible. If the analyzer failed

in this step of the derivation and considered 2 of the 45 to be feasible, then the inferred type would

almost certainly at least double. Additionally, each additional feasible sender adds an extra chance

for the analyzer to fail and return type>—a substantial risk in an analysis that finds precise types

for top-level queries roughly 30% to 50% of the time.

11.7 A Pruning Schedule for Interactive Use

Even though the trials all used a fixed pruning threshold, i.e. the Limited Relevant Set algorithm

from Chapter 7, the experimental results also shed light on the design of a more sophisticated

schedule for the Shrinking Relevant Set algorithm.

With the Limited Relevant Set algorithm, the choice of fixed pruning threshold gives a rough

control on the time required and the precision obtained. This control is loose. For example, as

reported above, a threshold of 3000 nodes yielded an average time of 30 seconds per query, but the

slowest of those queries required over 10 minutes.

For interactive use, these occasional large response times are not acceptable. We would prefer

to provide consistently fast responses even if the responses are not as precise as possible. A crude
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way to obtain consistently fast responses would be simply to halt the algorithm if a response has

not been found within some time limit and report failure. That is, run the analysis, and if it requires

more than, say, five seconds, terminate it and report that no information was found.

A more graceful degradation of precision than this approach may be obtained by taking advan-

tage of the structure of theDDP pruning algorithm. The tool begins by using a pruning threshold

of 3000. If no result has been found within three seconds, then the pruning threshold is decreased

to 50 and the algorithm is given two more seconds to complete. Usually the algorithm finishes

in a fraction of a second with a pruning threshold of 50, but in the rare case that it requires two or

more seconds, the algorithm is terminated after all—by lowering the threshold to 1—and the system

reports that no information was found.

Further analysis of data from the above experiments show that the cruder approach, that of using

a threshold of 3000 and then stopping after five seconds, yields an answer—precise or imprecise—to

40% of type queries. The remaining 60% would necessarily have to be answered with the maximal

type,>, becauseDDP does not provide sound information if it is halted early. The more gradual

approach, with a threshold of 3000 for 3 seconds followed by 50 for 2 seconds, finds answers to

a total of 94% of the queries: it answers 37% in the first three seconds, and 57% after reducing

the threshold to 50. Both approaches have a maximum execution time of five seconds, but gradual

reduction of the threshold yields a complete analysis of many more queries (94% versus 40%).

Further, the expected analysis time for the gradual-reduction schedule is 2.6 seconds per query,

versus 3.3 for the drop-dead schedule.

With this pruning schedule, the time required per query does not depend on the speed or load

of the underlying machine. All queries finish in five seconds. Instead, the speed and load on the

underlying computer affect thequality of results thatDDP produces. A slower machine will still

finish each query in five seconds but will produce less precise results.

This schedule has been designed according to experimental results, but it has not been experi-

mentally tested. It remains future work to determine whether this schedule produces the high level

of precision we expect based on the available data thus far.
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Table 11.4:Calculation of expected time for the gradual-reduction pruning schedule.

• total queries: 765

• at 3000 threshold:

– queries finishing in under 3000 ms: 281

– total time for those: 110946 ms

– queries finishing in under 5000 ms: 305

– total time for those: 206968 ms

– queries that take over 3000 ms at threshold of 3000: 484

– queries that take over 5000 ms at 3000: 460

• at 50 threshold:

– queries that are under 2000 ms at threshold 50 and also over 3000 ms at threshold 3000:
438

– total time for these: 365521 ms

– queries that are both over 3000 ms at threshold 3000 and over 2000 ms at threshold 50:
46

• drop-dead at 5 seconds should require 3277 ms/query:

206968+ 460∗ 5000
765

• gradual decay requires should require 2641 ms/query:

110946+ 365521+ 484∗ 3000+ 46∗ 2000
765
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CHAPTER XII

PROPOSED LANGUAGE CHANGES

A fundamental goal of the present research project has been to perform analysis in an unmodi-

fied, extremely dynamic programming environment that makes no concessions to ease of analysis.

This goal is valuable, because it demonstrates that, given suitably richdynamicsemantics includ-

ing memory safety, type-tagged data values, and (dynamic) type safety, it is possible to perform a

substantial amount of data-flow analysis. Nevertheless, there is no need for future software devel-

opers to work with a language at this extreme. This chapter briefly explores some language changes

and research directions that seem likely to improve the performance of data-flow analysis without

harming the overall character of the programming environment.

Initialized Variables Variable bindings in Smalltalk are automatically initialized to hold the spe-

cial valuenil whenever there is no other value to give them. This automatic initialization applies to

all forms of variables other than parameters; parameter bindings are created at the time of a message

send and thus their initial values are specified in the actual arguments of the message. Automatic

initialization is necessary, given the rest of the language definition, in order to provide the valuable

property of memory safety. It is impossible in Smalltalk to access memory in a way that violates the

expected memory model. If variables were not automatically initialized, then it would be possible

for a variable to hold an arbitrary bit pattern and for a program that accidentally uses that pattern as

an object reference to corrupt memory.

Automatic initialization has a negative effect on type inference, however, as pointed out previ-

ously by Agesen [3]. A correct type inferencer must declare that all variables other than parameters

can holdnil, i.e. type{|UndefinedObject|}. This is an immediate loss of precision if the variable is

defined to a more useful value and the automatically suppliednil is never used. Additionally, it can

cascade into other precision losses for data-flow queries that depend on type queries on variables.

Looking ahead, a keen example of the problem is the new type-specific flow goals that are forced to
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be added inChapter 14.

A property that can be exploited to improve this situation, however, is that many variables in

typical programs do not have the automatic initialization value read from them. Every time such a

variable is bound, it is assigned a new value before the program ever reads from the new binding.

Automatic initialization is important for safety, but it is frequently not needed for expressiveness.

Agesen exploits this property by performing an extra analysis before the type-inference proper

in order to statically detect many cases where a variable’s automatically initialized value is not used.

He reports a substantial increase in precision as a result [3].

An alternative solution that is worth exploring is to amend the language to allow initializers

with variable declarations. Instead of merely declaring that a block has a temporary variable named

foo, a block can simultaneously declare the variable and give it an initial value of, say, 0. This

approach does not increase the verbosity of programs but does allow a safe mechanism for a type

inferencer to avoid polluting more variables with type{|UndefinedObject|}. This approach is used in

a wide variety of languages including C [43], Java [30], and Ada [63], and we believe it would be a

net improvement to add this feature to Smalltalk.

Soft Types Soft types [16] provide a mechanism to add the benefits of static types to a language

without removing the dynamic character. Users canoptionally annotate variables with types, and

static tools can use whatever types the user has provided to gain various benefits such as error

checking and improved compilations.

While soft typing is frequently promoted as a mechanism for error checking and improved

compilation, it also has advantages for type inference. The type annotations provide upper bounds

on the types that can be inferred. Any type query on a type-annotated variable can use the annotated

type as an upper bound on the inferred type. As a particularly interesting case, aprunedtype query

does not need to infer a type of>, but instead can infer a type equal to the annotated type.

Modules Module systems provide a number of techniques that can potentially reduce the number

of feasible data-flow paths. The intuition is that most data- and control- flow occurswithin modules,

i.e. that there is relatively little flowbetweenmodules.
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To achieve this advantage, the module system must provide some form of restriction on com-

munication between modules. Static types at the module interfaces provide one mechanism for at

least narrowing the communication channels that cross module boundaries. Adding static types to

module interfaces does cause a dynamic language to become more static, but the dynamic character

of the language could still be maintained for work that is within modules.

Another promising mechanism is that of ownership types [13, 7]. Ownership types provide

statically checkable guarantees about the scope to which objects can flow. For example, ownership

types allow checking the property that an OrderedCollection’s internal array object only flows to

the methods and instance variables of class OrderedCollection—that is, the array isownedby the

OrderedCollection that uses it. It would appear that ownership types could be just as beneficial for

limiting feasible flow paths for module systems as they are for individual classes.

It is a challenging research project to develop a module system that both maintains the dynamic

character of Smalltalk while obtaining sufficient static restrictions that analyzers can benefit. Never-

theless, this suggestion is included in this chapter, notwithstanding that the rest of the chapter gives

suggestions for straightforward improvements. Given the state of the art today, an suitable module

system appears both feasible and useful.

Deployment-Time Interpreter A limited-strength deployment-time interpreter for Smalltalk would

improve the reliability of results inferred by any static analysis. Static analyzers for Smalltalk must

necessarily assume that extremely reflective features of the language will not be used at deployment

time. If, for example, a program reads a string from the user and then recompiles methods depend-

ing on the contents of that string, then an analyzer has little hope of making a safe prediction about

program behavior.

These reflective features are most frequently used by the development tools, not by applications

themselves. Thus, it should prove useful for many applications to have a limited-strength version

of the interpreter that does not allow those features to be used. Such an environment could even

be built within a standard full-strength development environment. Developers could then test and

deploy their code in the limited version of the language while performing the rest of the program

development with the reflective power of the full language.
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CHAPTER XIII

FUTURE WORK

This research reopens a static analysis problem that was widely suspected to be intractable. By

proving the problem tractable and by providing an approach for solving it, the work opens a variety

of future work.

13.1 Other Languages and Dialects

The current implementation is in the Squeak dialect of Smalltalk. The general approach ofDDP

should work, however, in a variety of Smalltalk dialects and in a variety of higher-order languages.

It would be valuable to implementDDP in other Smalltalk dialects, and to adjustDDP for other

languages entirely. Even statically typed languages can use the general approach and perhaps have

better data flow information inferred. Intuitively,DDP should be effective in this wider variety of

contexts, but one cannot be certain until it is tried.

13.2 Exhaustive Analysis

It is sometimes useful to perform anexhaustive analysisof an entire program, butDDP is not

designed to efficiently do so. DDP does allow for exhaustive analysis, simply by repeating the

analysis on every variable and expression in an entire program, but this approach is probably less

efficient than is possible. Much information would be calculated but then discarded; the subgoals

of each target goal produce useful and true data-flow judgements but those judgements would be

discarded.

For an efficient exhaustive analysis, it is desirable to keep old results and to reuse them in later

queries. Subgoal pruning adds a complication: distant subgoals of the target goal are more strongly

affected by pruning, and thus have relatively low precision. At the extreme, if a subgoal is distant

enough that it was in fact pruned, then there is no benefit from reusing it. Thus, before a judgement

is reused, it is important to consider how close to the target the goal was.
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Additionally, it is probably desirable to run multiple queries simultaneously. To choose the

queries to run, one could start with an individual query and then promote the firstk subgoals created

to additional target goals. With this approach, allk + 1 target goals are likely to contribute to each

other and to need similar subgoals. Thus a small increase in the pruning threshold should allowk+1

targets to be computed simultaneously without much loss in precision.

13.3 Pruning

The pruning approach implemented thus far is simple. While a simple technique gives a better

validation of the abstract algorithm in general, the overall performance of a concrete algorithm is

affected by the choice of pruning strategy. A good choice of pruning algorithm is a problem in

artificial intelligence, and predictably there is a large area of investigation possible.

One specific idea that could be immediately explored is the following: some dependencies

are stronger than others. For example, if one type judgement is required to have a supertype of

another type judgement’s type, then the two judgements are in a strong dependency—pruning one

judgement would effectively cause the other to be pruned as well. If one type judgement merely

influences the call graph, which in turn influences another type, then there is a weak dependency

between the types. In the first case, pruning one judgement will effectively prune the other, so

strong is the dependency. In the latter case, however, the dependency is so weak that the pruning

may even have no effect at all. A better pruning algorithm would consider direct dependencies much

more important than other dependencies. The occasional 4-times penalty described inChapter 7is

a simple example of this general refinement.

Another direction to investigate, related to pruning, is the character of the goal pool for typical

problems. For example, such investigation could help find a good threshold size to use for a partic-

ular program. Currently, little is known about the goals and their dependencies, and thus guesses

about the overall algorithmic strategy can only be evaluated by implementing them and trying them.

13.4 Other Analysis Problems

The present work studiestype inferencein the languageSmalltalk. The general approach ofDDP,

however, appears promising for other problems and for other programming languages. It would be
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interesting to learn whether the general approach is effective more widely.

Type inference is an interesting problem for many languages. ProbablyDDP is effective in other

dynamic languages such as Self and Scheme, and it would be interesting to verify that it is. Perhaps

DDP is useful in static languages such as Java and ML, though only experimentation can say.

Further, there are other data flow problems that the approach might help with. Other data-flow

analyses, such as alias analysis [65] and binding-time analysis [36], seem particularly promising.

Finally, the present work has used type inference based on CPA contours. It would be interesting

to systematically analyze which other type inference approaches can be adapted toDDP. Probably,

there are combinations that make sense. The current pruning approach ofDDP choose between two

extremes for each goal: either a precise CPA-based analysis, or an imprecise conservative analysis.

Likely, other analysis approaches could be used as intermediate pruning levels.

13.5 Applications

Finally, it would be valuable to try other applications of type inference than program understanding.

Compiler transformations and dead code removers would be good applications to try. They would

both be useful and interesting tools in themselves, and they would both give alternative objective

measures of the analysis’s effectiveness. These extra object measures would be useful for guiding

further development of the analysis itself.
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CHAPTER XIV

DDP/CT: EXTENDING DDP WITH SOURCE-TAGGED CLASSES

This chapter describes an extension toDDP calledDDP/CT. The extension uses the concept of

source-tagged classes, or source tagsto support analysis in the face ofdata polymorphism. This

extension has been implemented, but it has not been empirically validated and it has not been proven

correct. Thus, this chapter describes part of the research frontier for the type inference work as

described in this document.

Data polymorphism is, in Agesen’s words, “the ability of a slot (or variable) to hold objects

with multiple object types” [3]. Generic “container” or “collection” classes such as lists, tables and

arrays are the standard example of data polymorphism: the one Vector class can be used to create

both a vector of integers and a vector of strings.1 As Agesen pointed out, data polymorphism can

induce significant loss of precision in analyses that perform, or are dependent on, type inference.

A data-flow analysis in this setting will typically merge the types of all the values that flow into

distinct instances of any collection class. From the analyzer’s point of view, if an object flows into

one instance of a collection class, it will then flow out ofevery instance of that same collection

class. So, for example, if the program has two completely distinct vectors, one containing integers

and the other containing strings, analysis will show that a single fetch from either of these vectors

could produce either an integer or a string.

To address this problem, one can enrich the analyzer’s type system to partition objects more

finely than by class. Instead of all instances of class Vector being in the same type, those instances

can be subdivided in some fashion into the types (Vector,l1), . . . , (Vector,ln) for some sequence of

discriminatorsl1 . . . ln. This partitioning segregates flow paths that go through the class: flow into

any object of type (Vector,l i) can only flow out of an object of that same type.

For relatively static languages (such as Java [30]), an effective partitioning strategy is that of

1In Hindley-Milner type inferencers, this facility is described by the termparametric polymorphism[15]. Since the
analysis we are describing concerns an object-oriented language, and since the analysis is an intellectual descendent of
Agesen’s, we hew to the term data polymorphism.
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Wang and Smith’sDCPA algorithm: subdivide objects according to whichnew expression instanti-

ated them [70]. This approach yields a true partition because every object must have been instanti-

ated by exactly onenew expression; objects created by line 134 of the source code must be different

from objects created by line 431.

For extremely dynamic languages such as Smalltalk, however, this approach is ineffective. The

problem is that, in Smalltalk, object creation is not a primitive syntactic form. It is a single primitive

method, calledbasicNew, that is triggered indirectly by various instance-creation methods around

the program.2 Smalltalk classes are themselves objects, and when a new object is created at run

time, the classes are typically passed through a sequence of regular methods until arriving at the

actualbasicNew invocation. Since there is only one truebasicNew method in the program, this

kind of partitioning is trivial and unhelpful.

This chapter describes a partitioning strategy that achieves the effect of DCPA’s strategy in

Smalltalk, even though Smalltalk programs only have a single instantiation point. Note that it is

described in terms of the full Smalltalk language. Because Mini-Smalltalk includes a syntacticnew

statement instead of anew method, it does not capture enough of full Smalltalk to support describing

theDDP/CT extensions.

14.1 Extensions

DDP/CT includes a number of individual extensions to the baseDDP algorithm:

1. It extends the type system to allow class types to be subdivided usingsource tags.

2. It adds a new kind of goal, theinverse type goal.

3. It adds a secondsolution strategyfor answering senders goals that uses inverse type goals.

4. It adds a new kind of goal for finding thetype of array elements.

5. It augments flow goalsso that they can trace the flow of just those objects within a specified

type.

2For clearer exposition, we are ignoring the existence of a small handful of such methods.
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Source tags are the core ofDDP/CT’s extensions. They provide a mechanism for subdividing

the set of objects that are instances of one class, thereby providing a way to segregate data-flow

paths through such objects.

The other four extensions are needed to exploit this new subdivision. The new strategy for

senders goals is needed to trace backwards from a class’s instantiation methods to callers that fea-

sibly invoke the methods for a particular partition of the class’s instances; with the standardDDP

strategy, all invokers of the initialization methods would be considered feasible, leading to the in-

termixing that subdividing the types was intended to prevent. The new inverse type goals, in turn,

are required to support this new strategy for answering senders goals.

The array-element type goals are added because arrays are widely used data-polymorphic ob-

jects in Smalltalk, not only as data-structures in their own right, but also as the underlying storage

for many other collection classes, such as hash tables. We hope that source-tagged types will fi-

nally provide a way to analyze these uses precisely. Type-specific flow goals have been added as a

simple way to improve the precision of flow goals by avoiding flow paths of objects other than the

interesting ones.

14.1.1 Source-Tagged Classes

Source-tagged classesgive a way to approximate the partitioning approach of the provenDCPA

algorithm, even though Smalltalk only has onebasicNew method instead of Java’s many sepa-

ratenew expressions throughout the program. The approach exploits the common idiom that most

objects are created with a message-send expression whose target is the immutable global variable

that is the primary reference to the class object. Common examples are “ValueHolder new” and

“Point x: 3 y: 5.” In this idiom, the constructor method (new andx:y: in these two examples,

respectively) invokes thebasicNew method on the class to instantiate the class and then invokes a

sequence of methods on the resulting object to initialize that object with the specified parameters.

The partitioning approach ofDDP/CT, then, is to attach asource tagto all distinct references

to a class in the source. This is a static or abstract analog to the dynamic “taint” attribute used in

Perl for security purposes. Each location in the program text where a class is mentioned has its

own source tag. The abstract semantics associated with the type inference evaluates such a class
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reference to its tagged value. The tag is preserved as the abstract value flows through the program

during the analysis’ abstract interpretation. When an object is instantiated by sending the primitive

basicNew method to the class object, the tag is transferred to the abstract object thus created.

Source-tagged classes provide the effect of DCPA in this more dynamic setting: two different

occurrences of “ValueHolder new” in the source code will cause two distinct abstract values to be

created by the analysis. Hence, when an abstract value later flows into one of these two instances, it

won’t erroneously tunnel over to the other one.

A class type{|C|} in DDP includes all objects that are instances of classC. In DDP/CT, a class

type can also include asource tagl and be of the form{|C, l|}. The type{|C, l|} includes precisely those

instances ofC that are tagged with source tagl.

Tagged types are introduced to a running type inference whenever there is a type goal for an

expression that simply reads the primary global variable holding a class. Instead of solving such a

goal with a simple class type as the baseDDP would,DDP/CT solves the goal with a tagged class

type.

14.1.2 Inverse Type Goals

A inverse type goalrequests a flow position that includes all program locations that could produce

an object of a specified type. The specified type must be a source-tagged class type. To solve an

inverse type goal for source-tagged type{|C, l|}, DDP/CT uses one of two strategies depending on

whetherC is a metaclass or not.

If C is a regular class and not a metaclass, then{|C, l|} includes objects that were created by the

basicNew method. To solve such a goal,DDP/CT simply traces the forward flow (by posting flow

goals) of the return value from thebasicNew method3 under an assumed context that the receiver is

of type{|mclass(C), l|}. We use “mclass(C)” to mean the metaclass of classC. Solving this goal will

require finding the precise senders of thebasicNew message under these assumptions as described

in the next section.

If C is a metaclass, then{|C, l|} includes the classrclass(C) with tag l, where we userclass(C)

to mean the regular class whose metaclass isC. Aside from direct data flow, such an object can

3There are actually a small number of such methods, and the analyzer must trace all of them.
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only enter the computation from two sources: the program executes the expression with tagl, or the

program invokes the reflectiveclass method on an instance of{|rclass(C), l|}. Theclass method

returns the class of the receiver of the message, and it is frequently used in idiomatic Smalltalk. For

example, it is used (indirectly) by thecopy method of the Collection class in order to create a new

collection of the same class as the receiver. Therefore, ifC is a metaclass,DDP/CT traces flow

forward from two places: the expression with tagl, and theclass method under a context where

the receiver type is{|rclass(C), l|}.
Some exceptions should be noted. A fixed set of primitive Smalltalk classes have special syntax

for creating instances of that class; these classes are not typically instantiated by means of sending

new-style creation messages to the class. Examples are blocks, which have their own syntax, and

numbers, which can appear as literals. An inverse type query on such a class always returns position

>fp.

14.1.3 Senders Goals

Recall fromChapter 5that asenders goalin DDP finds those expressions in the program that can

invoke a specified method in a specified context. The strategyDDP uses to find those senders is:

first, find all message-send expressions that invoke a method of the appropriate name, and second,

check that the type of the receiver (which must be inferred using a subgoal) is consistent with the

expression invoking the method.

A potential difficulty of this approach arises if there are a large number of message-send expres-

sions whose message name matches the name of the queried method. For example, when trying to

find the senders of the AtomMorph class’sinitialize method, the standard strategy would con-

sider hundreds of potential message-send expressions, generate a type query for each one of them,

and, most likely, both generate a large number of subgoals and include a large number of false pos-

itives. Worse, consider querying for the senders of methodat:put: in class Array, perhaps as part

of an effort to find the type of elements that could be added to a particular set of interesting arrays.

In the standard Squeak code base, there are over one thousand senders ofat:put: to sort through,

and many of them do, in fact, invoke Array’sat:put: method. Potentially only a small number of

them invokeat:put: on the arrayobjectsthat are of true interest, but if the question is formulated
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as “who invokesat:put: in Array,” then the answer to the question is forced to include a large

number of extra senders in order to be correct.

DDP/CT therefore uses an alternative strategy if the specified context includes a non-trivial

receiver type (i.e., not the top type>). If the receiver type of the method is specified, then the

method in that context can only be invoked by a message-send expression where the receiver is in

the specified type. The alternative senders-goal strategy uses this fact. It has as a subgoal an inverse

type goal for the specified receiver type. The answer to this subgoal includes all expressions in

the program that can hold an object of the specified type. The alternative strategy then selects as

possible senders those message-send expressions whose receiver is in the inverse type goal’s answer

and whose message selector matches the method being queried.

In other words, the alternate strategy swaps the roles of the two selection criteria. Instead of

applying a semantic filter to the results of a base syntactic query, it syntactically filters the results of

a semantic query.

14.1.4 Array-Element Type Goals

Smalltalk arrays are treated as regular objects. There is no special syntax for accessing them. In-

stead, an array is an objecta that handles operation “a at: i” to retrieve the element at indexi, and

“a at: i put: e” for storing elemente into the array at indexi. Other objects in the system respond

to theat: andat:put: messages, doing non-array operations in response to them, and thus an ex-

pression such as “a := b at: i” might or might not perform an array operation. In fact, different

executions of this same statement might sometimes invoke an array operation and other times not,

depending on the class of object to whichb is bound at each execution.

The type goals ofDDP find a type for a variable, but Smalltalk arrays do not hold their contents

in regular Smalltalk variables. Thus, the baseDDP algorithm provides no way to even ask for the

type of an array’s elements. This was satisfactory at the timeDDP was designed, becauseDDP pro-

vided no strategy for finding such types.DDP/CT’s source tags, on the other hand, do provide the

necessary polyvariance for this analysis, and since arrays are frequently used in Smalltalk programs,

DDP/CT also includes a newarray-element type goal.

An array-element type goal finds the type of elements of any array in a specified array type.
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Ideally, the specified array type includes a source tag. In that case, the arrays whose elements are

being studied are those arrays created with the specified source tag. If the array type does not have a

source tag, then the solution strategy will still be followed, but most likely it will terminate quickly

with a type of>.

To solve an array-element type goal, the algorithm uses a senders goal to locate all invocations

of at:put: where the receiver might be a member of the goal’s array type. Then, for each such

invocation found, it posts a type goal for the second argument (i.e., theput: argument). Finally,

it takes the union of the answers from all of those type goals and reports that union as the type of

elements in the arrays in question.

14.1.5 Type-Specific Flow Goals

Recall that a flow goal asks where values can flow from a specified starting location. They are

used for a number of purposes, including the inverse type queries described above and finding the

program locations where a particular block might be invoked. Some of the enhancements described

above rely heavily on flow goals; manual inspection of early trials ofDDP/CT suggested that the

enhancements were not as effective as desired due to over-approximation in the flow goals on which

the solution strategies depend.

The biggest problem appeared to be thatDDP would trace flow paths that are feasible in princi-

ple but infeasible for the data type of interest. For example, a variable that sometimes holds arrays

that are being traced by an array-element type goal might at other times hold the valuenil. Trac-

ing flow through this variable would necessarily trace not only the interesting paths through which

the relevant arrays flow, but also the irrelevant paths thatnil will follow. If a message is sent to

the variable, then completely different methods might be invoked when the variable holds an array

versus when the variable holdsnil; tracing flow through these later methods causes a subgraph of

completely irrelevant program locations to be added to the potential flow from the original variable.

The solution inDDP/CT is to ask a better question. Instead of simply asking about flow from

a specified point,DDP/CT can ask about flow of objectsof a particular typestarting at a specified

point. Since, in fact, every use of flow goals inDDP is attempting to find the flow of objects in a

known type, every use of flow goals can take advantage of the new facility to specify the type of
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| c a other |

c := ValueHolder new.

a := c.

a contents: ’hello’.

other := ValueHolder new.

other contents: 12345.

other contents.

c contents

Figure 14.1: An example Smalltalk fragment that exhibits data polymorphism. In the first line,c,
a, andother are declared as temporary variables. The ValueHolder class is instantiated twice and
the two instances are assigned toc andother; a is assigned the same value asc. Thus,a andc are
aliases for the same object. A string is installed into thea/c value holder on the fourth line, while
an integer is installed intoother’s value holder on the following line.DDP/CT can distinguish
these two value holders from each other and deduce that the “c contents” fetch on the final line
will produce a string, as shown inFigure 14.2.

Figure 14.2: DDP/CT successfully infers that value holders assigned toc from Figure 14.1can
only hold strings and the undefined objectnil. As an aside, the object can holdnil because all
instance variables come into existence holdingnil. DDP/CT is not flow sensitive and thus cannot
determine that ValueHolder’s instance variable has been initialized beforecontents is ever called.

objects being traced. To continue the previous example, if the analyzer is tracing the flow of arrays,

then it can use a flow goal that only traces arrays. The flow-goal solution strategy is then free to

ignore methods to whichnil flows but arrays do not.

14.2 Examples

Figure 14.1shows some example code that is data polymorphic. Class ValueHolder is a standard

Smalltalk class used to hold an arbitrary value—it is a simple “cell” object. The internal value is set

using thecontents: method, and fetched using thecontents method. The example code creates

two value holders, storing one of them inc and the other inother. The code copies the reference

in c to a, resulting inc anda being aliases to the same object. The value holder inc is given, via

its aliasa, the string’hello’ to hold, while the value holder inother is given the integer12345

to hold.
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| c a other vhclass1 vhclass2 |

vhclass1 := ValueHolder.

c := vhclass1 new.

a := c.

a contents: ’hello’.

vhclass2 := ValueHolder.

other := vhclass2 new.

other contents: 12345.

other contents.

c contents

Figure 14.3: A variation of the code inFigure 14.1. In this code fragment, the class ValueHolder is
stored into a variable before being instantiated.DDP/CT successfully distinguishes the two kinds
of value holders—those stored inc and those stored inother—just as it did inFigure 14.1.

This code, in isolation, uses ValueHolder in a data-polymorphic fashion: there are other methods

in the standard Squeak image which use the class to contain other data types. AsFigure 14.2shows,

however,DDP/CT successfully infers a precise type for the value held inc. It traces data flow back

to the string’hello’ but ignores the infeasible data-flow path to the integer12345.

The next two figures show variations of the code fromFigure 14.1in order to demonstrate

an extent and a limitation ofDDP/CT’s effectiveness. InFigure 14.3, the class ValueHolder is

stored into variablesvhclass1 andvhclass2 before being instantiated. This is an example of

Smalltalk’s reflective ability to manipulate classes as first-class objects themselves. This example

demonstrates more clearly why “ValueHolder new” in Smalltalk is not merely a different way to

write “new ValueHolder()” in Java. In this example,DDP/CT is still able to keep the two value

holders distinct and infer thatc holds only strings.

Figure 14.4extends this example further and uses just one variable,vhclass, to hold the class.

Both c andother are instantiated by sendingnew to vhclass. DDP/CT is unable to distinguish

the two value holders in this case because it tags both of them with the singular reference to the

originating occurrence of ValueHolder on line 2. Even in this case, however,DDP/CT is able to

distinguish the two kinds of value holders in this code fragment from value holders created in other

parts of the standard Squeak code base we use for our tests. Thus,DDP/CT infers thatc holds

either a string or an integer, even though there are other value holders in the program that hold other

types.
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| c a other vhclass1 |

vhclass1 := ValueHolder.

c := vhclass1 new.

a := c.

a contents: ’hello’.

other := vhclass1 new.

other contents: 12345.

other contents.

c contents

Figure 14.4: Another variation of the code inFigure 14.1. This time there is only one variable,
vhclass1, used to hold class ValueHolder. In this case,DDP/CT fails to distinguish the two
kinds of value holder created in this fragment; it infers the same types for “c contents” and
“other contents”. However, it does distinguish these value holders from other value holders in
the program at large, ultimately inferring that both of these holders can hold only strings, integers,
or the undefined object.

| arr arr2 arr3 |

arr := Array new: 10.

arr at: 5 put: ’hello’.

arr2 := arr.

arr3 := arr2.

arr3 at: 5

Figure 14.5: Retrieving elements from an array. Data-polyvariant analysis is required in order for
the analyzer to connect objects removed from an array usingat: messages to objects placed into
that array usingat:put: messages.

Data-polymorphic analysis is especially useful when it is applied to resolving separate uses of

collection types. A simple example is shown inFigure 14.5. The code creates an array, adds the

string ’hello’ to it, and then retrieves that same string. The analyzer succeeds in this case, as

shown inFigure 14.6. The analyzer uses source tags to connect theat: message-send on the last

line of the example to theat:put: message-send on the third line of the example, while ignoring

the other 1706 senders ofat:put: in the same code base.

A more useful and sophisticated example is shown inFigure 14.7. In this example, we create two

numeric vectors, then compute their dot product. ThedotProduct: method, not shown, includes

a number of senders toat:. DDP/CT can connect those senders to the senders ofat:put: in

Figure 14.7using class tags, and determine that all of the arithmetic operations thedotProduct:
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Figure 14.6: The analyzer succeeds on the example inFigure 14.5.

| p1 p2 |

p1 := Array new: 3.

p1 at: 1 put: 2.

p1 at: 2 put: 3.

p1 at: 3 put: 0.

p2 := Array new: 3.

p2 at: 1 put: 3.

p2 at: 2 put: 4.

p2 at: 3 put: 1.

ˆp1 dotProduct: p2

Figure 14.7: Data-polymorphism occurs in numeric array computations.

method uses will be applied to integers. The result produced byDDP/CT is shown inFigure 14.8.

14.3 Multi-level Source Tags

Factory design patterns [26] present an extra challenge to data-polymorphic analysis. A typical fac-

tory method is shown inFigure 14.9. This method provides a useful level of indirection—subclasses

might override this method, and different platforms might replace the method outright. Unfortu-

nately, the very indirection that motivates the design pattern circumvents the strategy of class tags:

all value holders created by themakeHolder method are given the same source tag. Thus, the cen-

tral approach of this paper, as described so far, is insufficient to distinguish separate uses of objects

created by factories.

A sample use of this factory method is shown inFigure 14.10. Since the same source tag is used

for the value holders held by bothvh1 andvh2, data flow through the distinct holders is intermingled

as shown inFigure 14.11.

This example points to a solution, however. Notice that, while thevh1 andvh2 value holders

are both associated with the single mention of the ValueHolder class in the Platform factory method,
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Figure 14.8: The analyzer succeeds on the example inFigure 14.7.

Platform>>makeHolder

ˆValueHolder new

Figure 14.9: A typical factory method,makeHolder, for classPlatform. This kind of indirection
is useful to programmers in many circumstances, including the possibility that different platforms
will implement the method to use a different value-holder class. Unfortunately for the analysis,
however, all callers of this method will receive aValueHolder with the same source tag: the single
mention ofValueHolder in themakeHolder method.

they access that method through separate mentions of class Platform. If there were a way to tag the

ValueHolder references with the mention of Platform instead of the mention of ValueHolder, then

the two variables’ value holders could be discriminated by the analysis.

This can be accomplished by generalizing source tags into flow positions. A flow position can

include both a pointer to an expression in the program plus a context under which the expression

was evaluated. The context can include a type for the surrounding method’s parameters and for the

current receiver object. The type of the receiver object, in turn, can be another source-tagged class

type, completing a recursion. Thus, generalizing source tags into flow positions allows the system

to apply multiple tags to the same object.

A maximum number of tags—i.e., traversals through the recursive cycle of tags to contexts to

types to tags—must be chosen to keep the data-flow lattices finite. Choosing a maximum tagging

level of 1 yields an analyzer equivalent to one using simple source-tagged class types. A level of

0 gives a system that does not use source tags at all. A level of 2 is sufficient for the example of

Figure 14.10, resulting in the precise type inference shown inFigure 14.12.

14.4 Related Work

As mentioned previously, theDCPA algorithm by Wang and Smith partitions objects by which

new statement allocates them [70]. A type-inference algorithm crafted by Oxhøj, Palsberg, and
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| vh1 vh2 |

vh1 := Platform makeHolder.

vh1 contents: ’hello’.

vh2 := Platform makeHolder.

vh2 contents: 123.

vh1 contents.

Figure 14.10: An example usage of the factory method fromFigure 14.9. In this example, the
inferencer as described so far fails to distinguish separate container objects, because both holders
are given the same source tag.

Figure 14.11: The analyzer merges flow through the two different holders inFigure 14.10, and so
reports thatvh1 can hold both integers and strings.

Schwartzbach also partitions objects by allocation site [51].

A large number of alias-analysis algorithms partition allocated objects using “allocation sites”

[37]. An allocation site is typically an invocation ofnew or malloc() as inDCPA.

Plevyak and Chien describe an adaptive algorithm that often avoids using instantiation-point

tags when they would not be able to refine the analysis [53]. This approach speeds up the algorithm

with no loss in precision.DDP/CT is less sophisticated and uses source-tags generously even when

they are not needed. This potentially superfluous analysis is mitigated, however, by the ability of

algorithms in theDDP family to focus effort on a relatively small portion of the program.DDP/CT

may not happen to analyze a large number of uses of the same class at all in the sparse elements of

the program it traverses for a given request, independently of whether or not their analyses could

have been merged without loss of precision.
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Figure 14.12: Using multi-level source tags on the example fromFigure 14.10, it is possible to
distinguish objects that are created via a factory object.
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CHAPTER XV

CONCLUSIONS

This dissertation supports its thesis with the following work:

• a description of a new type inference algorithm to solve the stated problem

• a proof of correctness for this algorithm

• an implementation of the algorithm

• empirical analysis of the implementation’s performance

• a complete application, Chuck, leveraging the implementation

The description shows that the algorithm meets the basic requirements in the thesis: the algo-

rithm is demand-driven, it prunes subgoals, and it produces different types depending on calling

context. The description also gives an argument that, intuitively, the algorithm should both scale

and produce usefully precise types.

The proof shows that the algorithm infers correct types.

The implementations of the algorithm and the Chuck tool show that no pragmatic obstacles

have been overlooked by the on-paper descriptions. The algorithm works in full Smalltalk and it

generates the information needed for the main application intended.

The experimental results and the experiences with the Chuck tool both show that the algorithm

finds usefully precise types in larger programs.

In addition to defending its thesis, my research makes the following contributions:

• It gives an operational semantics for the essence of Smalltalk. That semantics is thorough:

it includes full closure semantics, nested mutable variables, and the #perform : method

(sendvar in Mini-Smalltalk).

• It gives complete data flow rules for demand-driven analysis with CPA abstract contours

for Smalltalk, including precise analysis of code using #perform : and blocks. These rules
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analyze forward flow in addition to type inference in order to support these features without

being extremely conservative.

• It describes a general algorithm—demand-driven with subgoal pruning—that appears promis-

ing for other analysis problems. The general algorithm allows stronger inference rules to be

used without abandoning scalability.

• It provides a complete implementation of the specific algorithmDDP.

• It provides an analysis framework for Smalltalk, used by theDDP implementation, that effi-

ciently supports interactive programming.

• It provides a program understanding tool, Chuck, that takes advantage of theDDP implemen-

tation, thus bringingDDP’s advantages to practitioners.

• It empirically identifies effective pruning thresholds forDDP, so that future implementors of

DDP have a good initial tuning of the algorithm’s main parameter.

• It empirically identifies the most common types that appear in a representative sample of

Smalltalk code.

• It empirically quantifies the improvement of subgoal pruning over root-goal pruning forDDP.

This work contributes to three major discussions that are ongoing in the programming language

community.

First, it reopens the problem of context-sensitive type inference in larger programs. The prevail-

ing research on type inference for the last ten years or so has reduced various kinds of sensitivity

in order to achieve scalability. For example, researchers have removed directionality from the data

flow, they have removed the use of precise call graphs, and they have merged goals for multiple

expressions into just one. My work adds a new option that scales while remaining context-sensitive

and while using directional data flow.

Second, my work emphasizes a connection between two existing fields: program analysis and

knowledge-based systems. Demand-driven algorithms, in general, are actually simple knowledge-

based systems where each goal has only one rule available for solving it. This connection between
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the fields seems likely to be fruitful. The encoding of many analysis algorithms as knowledge-based

systems appears likely to be straightforward. Using a knowledge-based system as the overall archi-

tecture, lets a program analyzer attempt a variety of strong inference rules, without fully committing

to the worst-case cost of those rules. This advantage is not specific to type inference.

Finally, this work continues a long-running discussion in programming language design regard-

ing static and dynamic languages. SinceDDP does infer precise types even in large programs, it

seems that type inference is practical even when a language is not statically type-checked. Thus,

this research defends language designs where one begins with a dynamic language and then adds

type-based features as an option to be applied whenever and wherever a software engineer deems it

most useful. In short, this research enriches the design space between static and dynamic languages.
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